ENVIRONMENTAL ASSESSMENT FOR
RENEWAL OF SOURCE MATERIAL LICENSE NO. SUA-1534
CROW BUTTE RESOURCES, INCORPORATED
CROW BUTTE URANIUM PROJECT
DAWES COUNTY, NEBRASKA

FEBRUARY 1998
DOCKET NO. 40-8943

U.S. Nuclear Regulatory Commission
Office of Nuclear Material Safety and Safeguards
Division of Waste Management
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1
 1.1 Background Information ... 1
 1.2 Proposed Action ... 1
 1.3 Review Scope .. 1
 1.3.1 Federal and State Authorities 1
 1.3.2 Basis for NRC Review .. 1

2.0 SITE DESCRIPTION .. 2
 2.1 Location .. 2
 2.2 Climate and Weather ... 2
 2.3 Geology .. 2
 2.3.1 Regional and Local Geology ... 2
 2.3.2 Seismicity ... 2
 2.4 Water Resources ... 2
 2.4.1 Surface Water ... 2
 2.4.2 Groundwater .. 2
 2.4.2.1 Aquifer Properties .. 2
 2.4.2.2 Ore Zone Confinement 2
 2.4.2.3 Groundwater Quality .. 2
 2.5 Demography ... 2
 2.6 Land Use .. 2
 2.7 Cultural Resources ... 2

3.0 PROCESS DESCRIPTION .. 3
 3.1 Introduction ... 3
 3.2 The Orebody .. 3
 3.3 Wellfield Design and Operation ... 3
 3.3.1 Wellfield Design .. 3
 3.3.2 Pre-operational Groundwater Sampling 3
 3.3.3 Well Construction and Testing 3
 3.4 Uranium Recovery Process ... 3
 3.5 Description of the Existing Main Process Plant 3
 3.6 Generation and Management of Wastes 3
 3.6.1 Gaseous Effluents .. 3
 3.6.2 Liquid Wastes .. 3
 3.6.2.1 Solar Evaporation Ponds 3
 3.6.2.2 Land Application of Treated Water 3
 3.6.2.3 Deep Well Injection .. 3
 3.6.3 Solid Wastes .. 3
 3.7 Monitoring Programs ... 3
 3.7.1 Hydrologic Monitoring .. 3
 3.7.2 Evaporation Pond Monitoring 3
 3.7.3 Environmental and Effluent Monitoring 3
TABLE OF CONTENTS
(continued)

4.0 GROUNDWATER RESTORATION, RECLAMATION, AND DECOMMISSIONING

4.1 Groundwater Restoration
- 4.1.1 Establishing Pre-operational Baseline Water Quality
- 4.1.2 Groundwater Restoration Methodology
- 4.1.3 Effectiveness of Groundwater Restoration

4.2 Reclamation and Decommissioning
- 4.2.1 Surface Reclamation
- 4.2.2 Plant Site Decommissioning

5.0 EVALUATION OF ENVIRONMENTAL IMPACTS

5.1 Introduction

5.2 Air Quality Impacts
- 5.2.1 Construction-Related
- 5.2.2 Operations-Related

5.3 Land Use Impacts

5.4 Water Impacts
- 5.4.1 Surface Water Impacts
- 5.4.2 Groundwater Impacts
 - 5.4.2.1 History of Excursions
 - 5.4.2.2 Evaporation Pond Spills and Seepage

5.5 Impacts on Soils

5.6 Impacts on Ecological Systems
- 5.6.1 Endangered Species
- 5.6.2 Aquatic Biota

5.7 Radiological Impacts
- 5.7.1 Introduction
- 5.7.2 Offsite Impacts
- 5.7.3 Radiological Impact on Biota Other Than Humans

5.8 In-Plant Safety

5.9 Waste Disposal Impacts

6.0 ENVIRONMENTAL EFFECTS OF ACCIDENTS

6.1 Potential Failure of Chemical Storage Tanks

6.2 Potential Pipeline Failures

6.3 Potential Failure of Evaporation Pond Liner or Berms

6.4 Potential Failure of Injection or Production Well Casing

6.5 Potential for Hydraulic Fracturing

6.6 Potential Impacts from Transportation Accidents

7.0 ALTERNATIVES
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>FINANCIAL SURETY</td>
<td>58</td>
</tr>
<tr>
<td>9.0</td>
<td>CONSULTATIONS WITH OTHER FEDERAL AGENCIES AND THE STATE OF NEBRASKA</td>
<td>59</td>
</tr>
<tr>
<td>10.0</td>
<td>FINDING OF NO SIGNIFICANT IMPACT</td>
<td>59</td>
</tr>
<tr>
<td>11.0</td>
<td>CONCLUSIONS INCLUDING ENVIRONMENTAL LICENSE CONDITIONS</td>
<td>61</td>
</tr>
<tr>
<td>12.0</td>
<td>REFERENCES</td>
<td>69</td>
</tr>
</tbody>
</table>

APPENDIX A DOCUMENTATION OF CONSULTATION WITH OTHER FEDERAL AGENCIES AND THE STATE OF NEBRASKA
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Summary of hydrologic properties</td>
<td>12</td>
</tr>
<tr>
<td>2-2</td>
<td>Original (i.e., pre-R&D mining) baseline water quality for the Crow Butte Site</td>
<td>13</td>
</tr>
<tr>
<td>2-3</td>
<td>Average pre-operational mine unit baseline water quality</td>
<td>14</td>
</tr>
<tr>
<td>2-4</td>
<td>Major population centers within 80 kilometers of the Crow Butte Uranium Project</td>
<td>15</td>
</tr>
<tr>
<td>3-1</td>
<td>Mine unit dimensions for the Crow Butte Uranium Project</td>
<td>19</td>
</tr>
<tr>
<td>3-2</td>
<td>Baseline water quality indicators</td>
<td>20</td>
</tr>
<tr>
<td>3-3</td>
<td>Typical lixiviant chemistry</td>
<td>28</td>
</tr>
<tr>
<td>3-4</td>
<td>Radiological, environmental, operational, effluent monitoring program</td>
<td>38</td>
</tr>
<tr>
<td>4-1</td>
<td>Baseline water quality and restoration quality for the Crow Butte R&D site</td>
<td>43</td>
</tr>
<tr>
<td>5-1</td>
<td>History of wells that have exceeded UCL limits for one or more excursion parameters at the Crow Butte Uranium Project</td>
<td>50</td>
</tr>
<tr>
<td>5-2</td>
<td>History of evaporation pond leaks at the Crow Butte Uranium Project</td>
<td>51</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Location of the Crow Butte uranium project</td>
<td>6</td>
</tr>
<tr>
<td>2-2</td>
<td>Site layout and restricted area of the Crow Butte Uranium Project</td>
<td>7</td>
</tr>
<tr>
<td>2-3</td>
<td>General stratigraphy of the Crow Butte Uranium Project</td>
<td>9</td>
</tr>
<tr>
<td>3-1</td>
<td>Locations of mine units 1 through 5 at the Crow Butte Uranium Project</td>
<td>21</td>
</tr>
<tr>
<td>3-2</td>
<td>Typical wellfield pattern and monitoring well locations at the Crow Butte Uranium Project</td>
<td>22</td>
</tr>
<tr>
<td>3-3</td>
<td>Well completion method one at the Crow Butte Uranium Project</td>
<td>25</td>
</tr>
<tr>
<td>3-4</td>
<td>Well completion method two at the Crow Butte Uranium Project</td>
<td>26</td>
</tr>
<tr>
<td>3-5</td>
<td>Well completion method three at the Crow Butte Uranium Project</td>
<td>27</td>
</tr>
<tr>
<td>3-6</td>
<td>Flow sheet of the uranium recovery process at the Crow Butte Uranium Project</td>
<td>29</td>
</tr>
<tr>
<td>3-7</td>
<td>Generalized layout of the main uranium processing facility at the Crow Butte Uranium Project</td>
<td>30</td>
</tr>
<tr>
<td>4-1</td>
<td>Schematic of the groundwater restoration process at the Crow Butte Uranium Project</td>
<td>41</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARA</td>
<td>As low as is reasonably achievable</td>
</tr>
<tr>
<td>CBR</td>
<td>Crow Butte Resources, Inc.</td>
</tr>
<tr>
<td>CRSO</td>
<td>Corporate Radiation Safety Officer</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FEN</td>
<td>Ferret Exploration Company of Nebraska</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of No Significant Impact</td>
</tr>
<tr>
<td>ISL</td>
<td>in situ leach</td>
</tr>
<tr>
<td>IX</td>
<td>ion exchange</td>
</tr>
<tr>
<td>LRA</td>
<td>license renewal application</td>
</tr>
<tr>
<td>MU</td>
<td>mine unit</td>
</tr>
<tr>
<td>NDEC</td>
<td>State of Nebraska Department of Environmental Control</td>
</tr>
<tr>
<td>NDEQ</td>
<td>State of Nebraska Department of Environmental Quality</td>
</tr>
<tr>
<td>NRC</td>
<td>U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>PBLC</td>
<td>Performance-Based License Condition</td>
</tr>
<tr>
<td>PV</td>
<td>pore volume</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>RO</td>
<td>reverse osmosis</td>
</tr>
<tr>
<td>SER</td>
<td>Safety Evaluation Report</td>
</tr>
<tr>
<td>SERP</td>
<td>Safety and Environmental Review Panel</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>TDS</td>
<td>total dissolved solids</td>
</tr>
<tr>
<td>UCL</td>
<td>upper control limit</td>
</tr>
<tr>
<td>UIC</td>
<td>Underground Injection Control</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

On December 20, 1995, Crow Butte Resources, Inc. (CBR) submitted a License Renewal Application (LRA) (CBR, 1995) for Source Material License SUA-1534 for the Crow Butte Uranium Project, which is located in Dawes County, Nebraska. In response to comments and requests for additional information from the U.S. Nuclear Regulatory Commission staff, CBR provided page changes to the LRA by letters dated April 1, June 25, and October 31, 1997 (CBR, 1997g, 1997f, and 1997b, respectively). By letter dated July 28, 1997 (CBR, 1997e), CBR requested several amendments to SUA-1534; the NRC staff decided, with CBR's approval, to address these requests as part of the overall license renewal process.

Information and discussion in this environmental assessment (EA) are based principally on information contained in the LRA and supplements, NRC licensing actions approved since December 1995, semiannual environmental monitoring reports submitted by CBR since the issuance of SUA-1534 in 1989, and NRC inspection reports generated during the more than six years of commercial operating experience at the Crow Butte site. The inspection history, conclusions, and license conditions presented here are based on NRC staff evaluations and reviews in support of performance-based licensing for the proposed license renewal.

With this license renewal, NRC will be authorizing the continuation of commercial operations under the performance-based license condition (PBLC) format. Under a performance-based license, the licensee has the burden of ensuring the proper implementation of the PBLC. The licensee may:

- Make changes in the facility or process, as presented in the application,
- Make changes in the procedures presented in the application, or
- Conduct tests or experiments not presented in the application, without prior NRC approval, if the licensee ensures that the following conditions are met:

 1. The change, test, or experiment does not conflict with any requirements specifically stated in this license (excluding material referenced in the PBLC), or impair the licensee's ability to meet all applicable NRC regulations.
 2. There is no degradation in the essential safety or environmental commitments in the license application, or provided by the approved reclamation plan.
 3. The change, test, or experiment is consistent with NRC conclusions regarding actions analyzed and selected in this EA.

If these conditions are not met, the licensee is required to submit an application for a license amendment to NRC. The licensee's determinations of whether the above conditions are satisfied will be made by a Safety and Environmental Review Panel (SERP).
The SERP shall consist of a minimum of three individuals, and one of these shall be designated as the SERP chairman. One member of the SERP shall have expertise in management and shall be responsible for managerial and financial approval changes; one member shall have expertise in operations and/or construction and shall be responsible for implementation of any changes; and one member shall be the corporate radiation safety officer (CRSO) or equivalent. Additional members may be included in the SERP as appropriate, to address technical aspects in several areas, such as health physics, groundwater hydrology, surface water hydrology, geology, geochemistry, and others. Temporary members, or permanent members other than the three identified above, may be consultants.

The licensee shall maintain records until license termination of any changes made pursuant to the PBLC. These records shall include written safety and environmental evaluations, made by the SERP, that provide the basis for determining that the change complies with the requirements referred to in the above conditions. The licensee shall furnish an annual report to NRC that describes such changes, tests, or experiments, including a summary of the safety and environmental evaluation of each. In addition, the licensee shall annually submit any pages of its license application that have been revised to reflect changes made under this condition.

The SERP will operate under standard operating procedures (SOPs) approved by NRC. The inspection role of NRC remains unchanged with the administration of performance-based licensing. Operational changes, regulatory commitments, and record keeping requirements implemented by CBR through the PBLC are subject to NRC inspection and possible enforcement actions.

1.1 Background Information

By letter dated October 7, 1987, Ferret Exploration Company of Nebraska (FEN) applied to NRC for a source material license to authorize commercial operation of the Crow Butte in situ leach (ISL) facility, located approximately eight kilometers (five miles) southeast of Crawford, Nebraska. The FEN proposal was to expand the then current research and development (R&D) scale operations at the site conducted under NRC Source Material License SUA-1441. To document its review of the FEN application, NRC staff prepared an EA and a safety evaluation report (SER), both of which were issued on December 12, 1989. Based on its review, the NRC issued Source Material License SUA-1534 to FEN on December 29, 1989, for the commercial operation of the Crow Butte Uranium Project.

FEN operated the project until May 1994, when the company name was changed to Crow Butte Resources, Inc. This was a name change only and did not include a change in ownership. CBR conducts its operations within a permit area that encompasses all or portions of Sections 11, 12, and 13 of Township 31N, Range 52W and Sections 18, 19, 20, 29, and 30 of Township 31N, Range 51W, Dawes County, Nebraska. The process plant is located in Section 19 of Township 31N, Range 51W. The permit area covers approximately 1130 hectares (ha) (2800 acres). The surface area to be affected over the projected life of the project is estimated at 200 ha (500 acres).
Land ownership in the permit area is approximately 90 percent private, with the remainder held by state, local, or federal governments. There are no Indian lands within an eight-km (five-mi) radius of the site. CBR maintains leased mineral rights from the private owners.

Since 1989, CBR has used in situ methods in a commercial operation to mobilize and recover uranium contained in the Basal Chadron Sandstone, at depths ranging from 122 to 244 meters (400 to 800 feet) over the permit area. The overall width of the mineralized area varies from approximately 305 to 1525 m (1000 to 5000 ft). The orebody ranges in grade from less than 0.05 to greater than 0.5 percent U₂O₅, with an average grade estimated at 0.26 percent equivalent U₂O₅ and 0.31 percent chemical U₂O₅.

By letter dated December 20, 1995, CBR applied for a renewal of SUA-1534 to authorize continued commercial operations at its ISL facility. CBR submitted revised sections to the LRA by letters dated April 1, June 25, and October 31, 1997. Those portions of an additional license amendment request, submitted by letter dated July 28, 1997, which have not been addressed in previous licensing actions, will be addressed in this license renewal process.

1.2 Proposed Action

The proposed action is to renew Source Material License SUA-1534 to authorize the continued commercial operation of the Crow Butte Uranium Project. The renewed license would authorize the facility to be operated such that the annual throughput does not exceed an average flowrate of 18,930 liters per minute (Lpm) [5000 gallons per minute (gpm)], exclusive of restoration flow, with yellowcake production not to exceed 907,185 kilograms (2 million pounds) annually. This EA discusses the environmental aspects of the CBR proposal. Additional information concerning the radiation safety aspects of the proposed action is provided in the accompanying SER.

1.3 Review Scope

1.3.1 Federal and State Authorities

NRC source material licenses are issued under Title 10, Code of Federal Regulations (CFR), Part 40 (10 CFR Part 40) (Domestic Licensing of Source Material). As stated in 10 CFR 40.3, "A person subject to the regulations in this part may not receive title to, own, receive, possess, use, transfer, provide for long-term care, deliver or dispose of byproduct material or residual radioactive material as defined in this part or any source material after removal from its place of deposit in nature, unless authorized in a specific or general license issued by the Commission..." "Source material" is defined in 10 CFR 40.4 as (1) uranium or thorium, or any combination thereof, in any physical or chemical form; or (2) ores which contain by weight 0.05 percent or more of uranium, thorium, or any combination thereof.

In addition, the Uranium Mill Tailings Radiation Control Act of 1978, as amended (UMTRCA) requires persons who conduct uranium source material operations to obtain a byproduct material license to own, use, or possess tailings and wastes generated by ISL operations (including aboveground wastes). This EA has been prepared in accordance with 10 CFR Part 51 (Environmental Protection Regulations for Domestic Licensing and Related
Regulatory Functions), which implements the NRC environmental protection program under the National Environmental Policy Act of 1969, as amended (NEPA). In accordance with 10 CFR Part 51, an EA serves to (1) briefly provide sufficient evidence and analysis for determining whether to prepare an environmental impact statement (EIS) or a finding of no significant impact (FONSI); (2) facilitate preparation of an EIS when one is necessary; and (3) aid the NRC’s compliance with NEPA when an EIS is not necessary.

The U.S. Environmental Protection Agency (EPA) maintains a review role in the aquifer exemption portion of the State of Nebraska Underground Injection Control (UIC) program (40 CFR 146.4). On May 23, 1990, EPA approved the State of Nebraska’s request to exempt a portion [1215 ha (3000 surface acres)] of the Chadron Aquifer near Crawford, Nebraska. The boundaries of CBR’s permit area are constrained by the boundaries of the approved aquifer exemption area. EPA’s approval became effective on June 22, 1990.

The Nebraska Department of Environmental Quality (NDEQ) [formerly the State of Nebraska Department of Environmental Control (NOEC)], administers and implements State of Nebraska rules and regulations for underground injection wells. NDEQ originally issued UIC Permit No. NE0122611 to FEN for the commercial operation of the Crow Butte Uranium Project on April 23, 1990. The current modified NDEQ UIC permit was issued to CBR on September 4, 1997.

The commercial operation was previously evaluated in an EA (NRC, 1989a) and an SER (NRC, 1989b) prepared by the NRC staff in support of the issuance of Source Material License SUA-1534 on December 29, 1989. The staff prepared and issued supplemental EAs for specific licensing actions on March 16, 1993; March 14, 1996; July 19, 1996; and June 13, 1997.

A new SER accompanies this EA. In preparing these two documents, the staff will re-evaluate the potential impacts associated with the continued commercial operation of the Crow Butte Uranium Project. Should NRC issue a FONSI, based upon the licensee’s application materials (CBR, 1995), previous operational data, and information contained in the earlier EA (NRC, 1989a) and SER (NRC, 1989b), and supplemental EAs, a renewed commercial source material license would be issued to CBR.

1.3.2 Basis for NRC Review

The NRC, Office of Nuclear Material Safety and Safeguards, Division of Waste Management staff has assessed the environmental and safety impacts associated with the renewal of CBR’s source material license and documented the results of the assessment in this report. The staff performed this appraisal in accordance with the requirements of 10 CFR Part 51.

In conducting this assessment, the staff considered the following:

- Information contained in the LRA and in additional submittals dated April 1, June 25, July 28, and October 31, 1997:
Information contained in previous environmental evaluations of the Crow Butte Uranium Project (NRC, 1984, 1989a);

Information contained in CBR amendment requests since December 1995 and NRC approvals of such requests;

The operational history of commercial operations since December 29, 1989, as evidenced by semiannual environmental monitoring reports and wellfield restoration information provided by CBR;

Information derived from NRC site visits and inspections of the Crow Butte facility, and

Consultations with the U.S. Fish and Wildlife Service, the NDEQ, and the State Historical Preservation Officer for the State of Nebraska.

2.0 SITE DESCRIPTION

2.1 Location

CBR’s facility and associated wellfields are located in west-central Dawes County, Nebraska, just north of the Pine Ridge area. Figures 2-1 and 2-2 show the general location of the commercial project site. The project site is approximately eight km (five mi) southeast of the city of Crawford, Nebraska, via Squaw Creek Road. The permit area within which CBR conducts its operations encompasses all or portions of Sections 11, 12, and 13 of Township 31N, Range 52W and Sections 18, 19, 20, 29, and 30 of Township 31N, Range 51W, Dawes County, Nebraska. The main process plant is located in Section 19 of Township 31N, Range 51W.

The total surface area of the project site is approximately 1130 ha (2800 acres). Of this total surface area, it is estimated that approximately 200 ha (500 acres) will be disturbed during the life of the project.

As discussed in Section 1.3.1, CBR’s current and future operations are restricted to a permit area whose ultimate boundaries are constrained by the boundaries of the aquifer exemption area approved by EPA and the NDEQ. Currently, CBR is required, by license condition, to obtain NRC approval for any changes to the permit area boundary. NRC will continue to require that CBR obtain staff approval for any permit area boundary modifications, so that it can examine any potential environmental impacts associated with the proposed modification.

In its July 28, 1997, submittal, CBR requested that an additional 16.2-ha (40-acre) area be added to its permit area. The staff finds that the requested area lies within the aquifer exemption area and further considers that the monitoring programs discussed in Section 3.0 will be sufficient to minimize any environmental impacts to this area. Therefore, the staff finds acceptable CBR’s request to enlarge its permit area.
Figure 2-2. Site layout and restricted area of the Crow Butte Uranium Project (from CBR, 1995)
2.2 Climate and Weather

Weather patterns in the vicinity of the site are typical of a semi-arid continental climate: warm summers, cold winters, light precipitation, and frequent weather changes. The area is generally drier than other parts of the Nebraska panhandle due to the presence of the Rocky Mountains to the west, the Black Hills to the north, and a plateau to the south, all of which effectively direct most moisture to areas other than this particular region.

Temperatures generally range between -5.0°C (23°F) and 31°C (87°F), with January the coldest month (average monthly minimum temperature of -12.4°C [9.7°F]) and July the warmest month (average monthly maximum temperature of 31.9°C [89°F]). Precipitation, on the other hand, is heaviest during the late spring/early summer, as showers and thunderstorms increase in number and intensity. Winters are generally dry, with average precipitation during the months of November and February about 1.0 cm (0.4 in.). The average annual precipitation is 39.5 cm (15.6 in.).

Winds at the site are fairly light, with wind speeds usually less than 18.5 km/hr (11.5 mph) and from the south to southwest. On average, the maximum wind speeds come from the northwest, averaging 23.7 km/hr (14.7 mph), while the lightest winds (10.2 km/hr [6.3 mph]) are out of the east-southeast.

2.3 Geology

2.3.1 Regional and Local Geology

The project area is located in the low, rolling hills of the Missouri Plateau and is dominated by a north-facing scarp, locally known as the Pine Ridge. This ridge skirts the south and west sides of the project area and divides the Great Plains into two subdivisions: the High Plains south of the ridge and the unglaciated Missouri Plateau north of the ridge. The major structural feature of the area is the Chadron Dome, which is surficially expressed in northeastern Dawes County. This anticlinal feature strikes northwest-southeast along the northeastern boundary of Dawes County, although over much of the area, the feature is buried by rather flat-lying Miocene-aged rock. Two northeast-trending faults are present in Dawes County. These faults are down-thrown to the north. The closest fault to the project area is the White River Fault. This fault was discovered during the exploration drilling phase of the project, and it follows the White River north of Crawford, approximately 3.2 km (2 mi) from the northern boundary of the project area. Total vertical displacement on the White River Fault is 60 to 100 m (200 to 400 ft) with no strike-slip movement.

Sedimentary strata within the Crawford Basin range in age from late Cretaceous through the Tertiary. Figure 2-3 is the stratigraphic column representing the project area. The basal confining layer is the Cretaceous Pierre Shale, a very extensive and thick [365 to 455 m (1200 to 1500 ft)] marine sediment. The ore zone is the Basal member of the Oligocene Chadron Formation, a 9 to 14 m (30 to 45 ft) thick arkosic sandstone. Over the permit area, the Basal Chadron ranges from 122 to 244 m (400 to 800 ft) below the ground surface due to topographic changes. Above the Basal Chadron are the Middle and Upper members of the
Figure 2-3. General stratigraphy of the Crow Butte Uranium Project (from CBR, 1995)
Chadron Formation, which consist of clay, silt and sandy claystone about 64 m (210 ft) thick in the project area.

The Brule Formation lies conformably on top of the Chadron Formation, and with the Chadron, comprises the Oligocene White River Group. The Brule has been subdivided into the Orella and the Whitney Members. The Orella is comprised of buff to brown siltstones and clays, while the Whitney is comprised of fairly massive buff to brown siltstones. Some moderate to well-defined channel sands can be observed in the Whitney Member in both drill holes and in outcrops. These Upper Brule channel sands are limited in lateral extent and continuity, but may be occasionally saturated with water in the otherwise generally impermeable Brule. Within the project area, these sand units are encountered in the upper 76 m (250 ft) of the drill holes.

2.3.2 Seismicity

The Crow Butte Uranium Project is within Seismic Risk Zone 1, where only minor damage is expected from earthquakes that occur within this area. The nearest area of higher seismic risk to the project is located approximately 483 km (300 mi) from the project, in southeastern Nebraska, within the eastern part of the central Nebraska Basin. Although the project is within an area of low seismic risk, occasional earthquakes have been reported. The strongest earthquakes recorded in northwest Nebraska occurred near Chadron on July 30, 1934, with an intensity of VI (Modified Mercalli Intensity Scale). This earthquake resulted in damaged chimneys, cracked plaster, and to a lesser extent, falling china. Another earthquake occurred near Chadron on March 9, 1963. This earthquake had an intensity of II-III and was not accompanied by any damage or noise. Although the risk associated with major earthquakes in the project area is slight, some low to moderate tectonic activity is occurring. However, this activity is not expected to affect the mining operations.

2.4 Water Resources

2.4.1 Surface Water

Two major watersheds, the White River and Hat Creek, drain the area north of Pine Ridge. The commercial project permit area lies within the White River watershed. Three tributaries of the White River drain the project area: White Clay Creek, Squaw Creek, and English Creek. Squaw Creek is the closest tributary to the current mining areas. Eight different surface water impoundments, seven of which are on these creeks, are located within or near the permit area. These impoundments usually consist of earthen dams constructed across the creeks, with the impounded water used for livestock watering.

2.4.2 Groundwater

2.4.2.1 Aquifer Properties

The Basal Chadron sandstone is the only water-bearing strata in the Chadron Formation that can be considered an aquifer. The Basal Chadron aquifer is artesian, and locally, some free-flowing wells are present. On the other hand, regionally and locally, the Brule Formation is an important aquifer, producing sufficient quantities of water with low total dissolved solids.
(TDS), which is suitable for domestic and agricultural purposes. Locally, the direction of flow in the Chadron and Brule aquifers is to the north-northwest.

CBR has conducted three aquifer tests to constrain the hydraulic properties of the ore horizon. The first test was conducted in support of the R&D operations in November 1982, the second in June 1987, at a site located approximately 850 m (2800 ft) north of the initial aquifer test site, and the final test in September 1996 at a location approximately 2630 m (8600 ft) northwest of the second test. The tests have zones of influence which slightly overlap, and therefore, results of these tests adequately define the hydraulic conditions over a majority of the permit area.

The first aquifer analysis was discussed in the EA prepared by NRC for the R&D license (NRC, 1984). Based upon the results of the analysis in the R&D EA, it was concluded that the Basal Chadron Sandstone (the ore zone) was adequately confined and that effects of leakage from the upper aquitard were minimal.

The results of the second aquifer analysis were similar to those of the first. In summary, the results of the second aquifer test indicated that the Basal Chadron Sandstone was a non-leaky, confined, slightly anisotropic aquifer. For the five different analytical methods used, the effective transmissivity ranged from 3.74E-4 to 4.02E-4 m²/s (348 to 374 ft²/day). Given the average thickness of the Basal Chadron in the vicinity of the project area (12 m [40 ft] with a range of 9 to 13 m [30 to 44 ft]), the hydraulic conductivity therefore ranged from approximately 3.1E-5 to 3.3E-5 m/s (8.7 to 9.3 ft/day). Based on the results from this pump test, the major axis of transmissivity in the Basal Chadron aquifer lay along an azimuth of about 51 degrees with a magnitude of 3.97E-4 m²/s (369 ft²/day), and the minor axis of transmissivity along an azimuth of about 141 degrees with a magnitude of 3.87E-4 m²/s (360 ft²/day).

The results of the third aquifer pump test continued to demonstrate favorable hydrogeologic conditions within the Chadron aquifer, including confinement of the aquifer (NDEQ, 1996).

2.4.2.2 Ore Zone Confinement

Lower confinement in the commercial operations area is provided by over 305 m (1000 ft) of Pierre Shale. The upper confinement is composed of the Chadron Formation above the Basal Chadron Sandstone (Middle and Upper Chadron) and that portion of the Brule Formation which underlies the intermittent Brule Sandstones (Orella Member). These units isolate the Basal Chadron Sandstone from overlying aquifers with several hundred feet of clay and siltstones. Thicknesses range from about 30 m (100 ft) in the northeastern part of the permit area, to 150 m (500 ft) in both the southern and northern parts of the area. It is about 60 to 90 m (200 to 300 ft) thick in the current mining area.

From laboratory data, the vertical hydraulic conductivities of the upper confining layers and the underlying Pierre Shale, are approximately 3.5E-13 m/s (9.9E-8 ft/day) and 3.6E-13 m/s (1.0E-7 ft/day), respectively (NRC, 1989a; CBR, 1995). These hydraulic conductivities are very similar to those estimated during R&D operations. Field data from Aquifer Test No. 2 indicate a vertical hydraulic conductivity of 1.5E-11 m/s (4.3E-6 ft/day) for the Pierre Shale. The hydraulic conductivity of the ore zone contrasts sharply with that of the overlying and underlying confining layers. Based upon the measured hydraulic conductivities, the average thickness of the
aquitards, and the assumption that these aquitards have an effective porosity of two percent under a unit gradient, approximately 1050 years would be required for water to move through the overlying aquitard (from Aquifer Test No. 1; CBR, 1995, as modified on June 25, 1997) and about 16,000 years would be required for water to penetrate the underlying aquitard (Aquifer Test No. 2, field data; CBR, 1995, as modified on June 25, 1997). The properties of the Basal Chadron and the confining strata are summarized in Table 2-1.

Laboratory testing of the overlying confining layers indicates that these layers may exhibit a minor amount of leakage. However, during the aquifer testing, no loss of pressure occurred that would indicate that leakage was occurring. Similarly, the underlying confining layer response attributable to the aquifer testing indicated no leakage.

The aquifer testing indicates that groundwater flow will be contained by the confining strata and concentrated within the production zone. Vertical control of the mining solutions is reasonably ensured by the confining characteristics, associated hydraulic conductivities, and continuous extent of the confining beds. Finally, vertical excursions detected to date during commercial operations (see Section 5.4.2.1) have resulted from problems with well completion, testing, or abandonment. This supports the aquifer testing results concerning the integrity of the upper confining layers.

Table 2-1. Summary of hydrologic properties (NRC, 1989a)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hydrologic Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle Chadron</td>
<td>Overlying confining layer = 95–100 m (315–325 ft) thick</td>
</tr>
<tr>
<td>Red Clay Bed 3 to 8 m (10–25 ft)</td>
<td>Vertical hydraulic conductivity = 3.5E-13 to 2.5E-12 m/s (9.9E-8 to 7.08E-7 ft/day)</td>
</tr>
<tr>
<td>Basal Chadron 9 to 13 m (30–44 ft)</td>
<td>Transmissivity = 5.2E-4 m²/s (460 ft²/day)</td>
</tr>
<tr>
<td></td>
<td>Hydraulic conductivity = 3.1E-5 to 3.3E-5 m/s (8.7 to 9.34 ft/day)</td>
</tr>
<tr>
<td></td>
<td>Storativity = 7E-5</td>
</tr>
<tr>
<td></td>
<td>Transmissivity = 3.9E-4 to 4.0E-4 m²/s (359 to 374 ft²/day)</td>
</tr>
<tr>
<td></td>
<td>Storativity = 8.4E-5 to 1.3E-4</td>
</tr>
<tr>
<td></td>
<td>Transmissivity = 3.7E-4 to 3.8E-4 m²/s (348 to 355 ft²/day)</td>
</tr>
<tr>
<td>Pierre Shale 365 m (1,200 ft)</td>
<td>Vertical hydraulic conductivity = 3.4E-11 to 3.6E-11 m/s</td>
</tr>
</tbody>
</table>

Hydrologic Testing

<table>
<thead>
<tr>
<th>Test</th>
<th>Hydrologic Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Test (1982):</td>
<td>(2°) Transmissivity = 4.3E-4 m²/s (401 ft²/day)</td>
</tr>
<tr>
<td></td>
<td>(92°) Transmissivity = 3.1E-4 m²/s (290 ft²/day)</td>
</tr>
<tr>
<td>Second Test (1987):</td>
<td>(51°) Transmissivity = 4.0E-4 m²/s (369 ft²/day)</td>
</tr>
<tr>
<td></td>
<td>(141°) Transmissivity = 3.9E-4 m²/s (360 ft²/day)</td>
</tr>
</tbody>
</table>
2.4.2.3 Groundwater Quality

Table 2-2 summarizes the water quality of the Brule and Chadron Formations from the baseline monitoring wells drilled for the R&D project, prior to any mining activity at the site. These data indicate that the Basal Chadron aquifer is generally of good quality and has been defined by the NDEQ as an underground source of drinking water (NRC, 1989a). However, in the vicinity of the mineralized zone, uranium and radium concentrations are elevated. In the wells that were used to determine baseline water quality in the Basal Chadron, uranium and radium concentrations ranged from 0.1 to 619 picocuries per liter (pCi/L), with a mean of 53 pCi/L. Similarly, within the R&D wellfield, radium-226 concentrations had a baseline mean of 859 pCi/L. These values are well above the 5 pCi/L EPA primary drinking water standard. As a result, water drawn from the Basal Chadron Sandstone would not be recommended for human consumption.

Table 2-2. Original (i.e., pre-R&D mining) baseline water quality for the Crow Butte site. All units in mg/l unless otherwise noted. From NRC, 1989a.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Brule Formation (n=4)</th>
<th>Chadron Formation (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean</td>
</tr>
<tr>
<td>Ca</td>
<td>7.1-98</td>
<td>48</td>
</tr>
<tr>
<td>Mg</td>
<td>0.3-16</td>
<td>6.6</td>
</tr>
<tr>
<td>Na</td>
<td>12-340</td>
<td>104</td>
</tr>
<tr>
<td>K</td>
<td>4.1-15.9</td>
<td>9.9</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>137-627</td>
<td>364</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>1-23</td>
<td>10</td>
</tr>
<tr>
<td>Cl</td>
<td>1.6-192</td>
<td>48</td>
</tr>
<tr>
<td>Cond. (mhos)</td>
<td>246-1481</td>
<td>714</td>
</tr>
<tr>
<td>pH (std. units)</td>
<td>6.8-8.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Total U</td>
<td>0.001-0.021</td>
<td>0.0064</td>
</tr>
<tr>
<td>Ra-226 (pCi/L)</td>
<td>0.1-3.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Prior to mining within a delineated portion (i.e., "mine unit") of its permit area, CBR establishes baseline water quality within the ore zone, at the ore zone perimeter, and in the first aquifer overlying the ore zone. These water quality data are used to determine groundwater monitoring requirements and restoration standards. Average concentrations of various constituents, as measured in groundwater samples drawn from the Basal Chadron, are provided in Table 2-3 for the five mine units (MUs) operated to-date at the site.
Table 2-3. Average pre-operational mine unit baseline water quality. Units are in mg/L unless otherwise noted. Data from CBR, 1995.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MU-1 Avg</th>
<th>MU-2 Avg</th>
<th>MU-3 Avg</th>
<th>MU-4 Avg</th>
<th>MU-5 Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date established</td>
<td>12/31/90 and 3/21/94</td>
<td>1/23/92</td>
<td>11/10/92</td>
<td>2/13/94 and 3/16/95</td>
<td>9/12/95</td>
</tr>
<tr>
<td>NH₄</td>
<td>≤0.372</td>
<td>≤0.37</td>
<td>≤0.329</td>
<td>0.288</td>
<td>0.28</td>
</tr>
<tr>
<td>As</td>
<td>≤0.00214</td>
<td>≤0.001</td>
<td>≤0.001</td>
<td>≤0.00209</td>
<td>≤0.001</td>
</tr>
<tr>
<td>Ba</td>
<td>≤0.996</td>
<td>≤0.01</td>
<td>≤0.1</td>
<td><0.1</td>
<td>≤0.10</td>
</tr>
<tr>
<td>Cd</td>
<td>≤0.00644</td>
<td>≤0.01</td>
<td>≤0.01</td>
<td><0.01</td>
<td>≤0.01</td>
</tr>
<tr>
<td>Cl</td>
<td>203.9</td>
<td>208.6</td>
<td>197.6</td>
<td>217.5</td>
<td>191.9</td>
</tr>
<tr>
<td>Cu</td>
<td>≤0.0249</td>
<td>≤0.013</td>
<td>≤0.0108</td>
<td>≤0.0114</td>
<td>≤0.01</td>
</tr>
<tr>
<td>F</td>
<td>0.886</td>
<td>0.67</td>
<td>0.719</td>
<td>0.745</td>
<td>0.64</td>
</tr>
<tr>
<td>Fe</td>
<td>≤0.0441</td>
<td>≤0.05</td>
<td><0.05</td>
<td>≤0.0504</td>
<td>≤0.05</td>
</tr>
<tr>
<td>Hg</td>
<td>≤0.00067</td>
<td>≤0.001</td>
<td>≤0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Mn</td>
<td>≤0.00122</td>
<td>≤0.01</td>
<td>≤0.01</td>
<td>≤0.01</td>
<td>≤0.01</td>
</tr>
<tr>
<td>Mo</td>
<td>≤0.0689</td>
<td>≤0.073</td>
<td><0.1</td>
<td><0.1</td>
<td>≤0.10</td>
</tr>
<tr>
<td>Ni</td>
<td>≤0.0340</td>
<td>≤0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>≤0.05</td>
</tr>
<tr>
<td>NO₃</td>
<td>≤0.050</td>
<td>≤0.039</td>
<td>≤0.0728</td>
<td>≤0.114</td>
<td>≤0.10</td>
</tr>
<tr>
<td>Pb</td>
<td>≤0.0315</td>
<td>≤0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Ra (pCi/L)</td>
<td>229.7</td>
<td>234.5</td>
<td>165.0</td>
<td>154.0</td>
<td>166.0</td>
</tr>
<tr>
<td>Se</td>
<td>≤0.00323</td>
<td>≤0.001</td>
<td>≤0.00115</td>
<td>≤0.00244</td>
<td>≤0.002</td>
</tr>
<tr>
<td>Na</td>
<td>412</td>
<td>411</td>
<td>428</td>
<td>416.6</td>
<td>397.6</td>
</tr>
<tr>
<td>SO₄</td>
<td>356.2</td>
<td>348.2</td>
<td>377.0</td>
<td>337.0</td>
<td>364.5</td>
</tr>
<tr>
<td>U</td>
<td>0.0922</td>
<td>0.046</td>
<td>0.115</td>
<td>0.118</td>
<td>0.072</td>
</tr>
<tr>
<td>V</td>
<td>≤0.0663</td>
<td>≤0.1</td>
<td><0.1</td>
<td>≤0.0984</td>
<td>≤0.10</td>
</tr>
<tr>
<td>Zn</td>
<td>≤0.0384</td>
<td>≤0.025</td>
<td>≤0.0131</td>
<td>≤0.0143</td>
<td>≤0.02</td>
</tr>
<tr>
<td>pH (std units)</td>
<td>8.46</td>
<td>8.32</td>
<td>8.37</td>
<td>8.68</td>
<td>8.5</td>
</tr>
<tr>
<td>Ca</td>
<td>12.5</td>
<td>13.4</td>
<td>13.3</td>
<td>11.2</td>
<td>12.6</td>
</tr>
<tr>
<td>Total CO₃</td>
<td>351.2</td>
<td>362.0</td>
<td>377.0</td>
<td>374.0</td>
<td>373.0</td>
</tr>
<tr>
<td>K</td>
<td>12.5</td>
<td>12.6</td>
<td>13.9</td>
<td>16.7</td>
<td>11.5</td>
</tr>
<tr>
<td>Mg</td>
<td>3.2</td>
<td>3.5</td>
<td>3.5</td>
<td>2.8</td>
<td>3.4</td>
</tr>
<tr>
<td>TDS</td>
<td>1170.2</td>
<td>1170.4</td>
<td>1183.0</td>
<td>1221.0</td>
<td>1179.0</td>
</tr>
</tbody>
</table>
As discussed above, the geology is rather uniform over the production area. The production zone and confining strata also are continuous over the commercial area. The lithologic properties vary slightly, but for the most part, the geologic data as well as the aquifer testing and groundwater quality data indicate that similar groundwater responses can be expected over the entire production area.

2.5 Demography

The Crow Butte facility is located in Dawes County, Nebraska, which, with a population of 9021 in 1990 spread over approximately 3618 km² (1397 mi²), had a population density of approximately 2.5 persons per square kilometer (6.5 persons per square mile). By comparison, the statewide density was 7.9 persons per square kilometer (20.6 persons per square mile). Dawes County's population has declined slightly since 1980.

It is estimated that greater than 40,000 people live within 80 km (50 miles) of the Crow Butte facility, of which approximately 1500 live within 10 km (6.2 mi) of the site (CBR, 1995). The nearest Indian reservation is the Pine Ridge Indian Reservation, the nearest borders of which are located approximately 50 km (31 mi) northeast of the Crow Butte facility. Table 2-4 identifies the major population centers within 80 km (50 mi) of the facility.

<table>
<thead>
<tr>
<th>Town</th>
<th>1990 Population</th>
<th>Distance from Site (km)</th>
<th>Distance from Site (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crawford, NE</td>
<td>1115</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Chadron, NE</td>
<td>5588</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>Harrison, NE</td>
<td>291</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>Hemingford, NE</td>
<td>953</td>
<td>43</td>
<td>27</td>
</tr>
<tr>
<td>Hay Springs, NE</td>
<td>693</td>
<td>55</td>
<td>34</td>
</tr>
<tr>
<td>Oelrichs, SD</td>
<td>138</td>
<td>61</td>
<td>38</td>
</tr>
<tr>
<td>Alliance, NE</td>
<td>9765</td>
<td>73</td>
<td>45</td>
</tr>
<tr>
<td>Rushville, NE</td>
<td>1127</td>
<td>74</td>
<td>46</td>
</tr>
</tbody>
</table>

* Approximate distance from facility by air

2.6 Land Use

The predominant land use in Dawes County, as well as the project area, is livestock grazing and associated feed production. The cultivated lands adjacent to the permit area are used
primarily for production of winter wheat, alfalfa, and oats. The native grasslands are grazed or harvested for hay. Local cattle graze about 67 percent of the year, and local consumption of locally-produced meat is about 10 percent. CBR has claims or leasehold interests for the surface and use rights, along with uranium mineral rights, within all of the areas proposed to be mined. After mining, the land will be reclaimed and returned to its original use as livestock grazing land.

There are a several Federal and State parks and recreation areas located within 80 km (50 mi) of the site. Nearby Chadron and Fort Robinson State Parks receive a large number of visitors annually. In 1994, 202,002 people visited Chadron State Park, while in 1994, Fort Robinson State Park welcomed some 342,603 people (State of Nebraska, 1997). Both of these recreational areas have seen an increasing number of visitors since at least 1991.

An additional source of seasonal population is Chadron State College, located approximately 35 km (21.6 mi) from the facility, which has an enrollment of approximately 2600 students.

2.7 Cultural Resources

Surveys for historical and archaeological sites in the vicinity of CBR's proposed R&D and commercial operations were conducted in 1982 and 1987, by the University of Nebraska and the Nebraska State Historical Society (NSHS), respectively (CBR, 1995). A more detailed discussion of the two surveys was provided previously to NRC (CBR, 1987). Within the survey area, there are no sites listed on the National Register or registered as natural or historic landmarks. However, the investigations did identify six sites of potential archaeological data recovery importance or possible architectural interest.

To determine the potential eligibility of any of the six sites for listing on the National Register, further information would need to be collected. In the meantime, CBR has pursued a strategy of avoidance, and CBR's field observations in August 1995 indicated that commercial operations to date have not directly affected any of the sites (CBR, 1995). CBR has stated its commitment to coordinate with the NSHS before any development occurs in the immediate vicinity of these sites (CBR, 1995). The staff will require that CBR provide NRC with documentation of its coordination with NSHS prior to developmental activity in the immediate vicinity of any of the six sites. CBR agreed to this condition, by telephone, on February 3, 1998.

CBR has begun but not yet completed a survey of the Crow Butte site and its environs to identify properties of cultural significance to Native American tribes. This process, which may take six months to a year to complete, involves significant interactions between CBR and Native American tribes who once inhabited and/or still inhabit the Crow Butte site area. Depending on the results of this survey, additional consultations between NRC and the State Historic Preservation Officer for the State of Nebraska may be necessary (see Section 9.0 for a discussion of consultation to-date). While the survey is on-going, NRC will authorize CBR to continue operations within currently disturbed areas. However, prior to engaging in any construction activity not previously assessed by NRC, CBR will be required, by license condition, to complete the cultural resource survey. All disturbances associated with the proposed construction will be completed in compliance with the National Historic Preservation Act of 1966 (as amended) and its implementing regulations (36 CFR Part 800), and the
Archaeological Resources Protection Act of 1979 (as amended) and its implementing regulations (43 CFR Part 7).

In addition, in order to ensure that no unapproved disturbance of cultural resources occurs, CBR will be required to stop any work that results in the discovery of previously unknown cultural artifacts. Such artifacts shall be inventoried and evaluated in accordance with 36 CFR Part 800, and no disturbance shall occur until the licensee has received authorization from NRC to proceed. CBR agreed to these license conditions, by telephone, on February 3, 1998.

3.0 PROCESS DESCRIPTION

3.1 Introduction

The process of in situ uranium leach mining is relatively simple in theory. An oxidant- and carbonate-charged solution (called "lixiviant") is pumped into the production zone aquifer through injection wells. With slight pH adjustments, the reduced uranium is oxidized and dissolved by complexation with the carbonate. The uranium-rich solution ("pregnant" lixiviant) is drawn to the recovery wells where it is pumped to the surface and transferred to the processing circuit.

The uranium is removed from the solution by adsorption onto ion exchange (IX) resin. The now barren lixiviant is recharged with oxidant and carbonate and re-injected into the production zone for additional uranium recovery. When the resin bed becomes saturated with uranium, the resin is eluted, or stripped, by passing a strong chloride solution through the bed. The resulting concentrated uranium solution is transferred to tanks where the uranium is precipitated by the addition of hydrochloric acid, sodium hydroxide, and hydrogen peroxide. The resulting product is a uranium slurry that is approximately one-half water. This product can either be shipped as a slurry, processed into a wet cake, or dried. The production cycle is continued until the ore zone is depleted to a point at which economic recovery is no longer feasible. The extent to which in situ leaching can be conducted is limited by the suitability of the ore zone conditions for containing and controlling lixiviant during the leaching process.

During production, there is a constant movement of lixiviant through the aquifer from outlying injection wells to internal recovery wells. The injection and recovery wells can be arranged in any of a number of geometric patterns depending on the orebody's configuration, the aquifer permeability, and the operator's preference; however, most often, wells are placed in a five- or seven-spot pattern. Monitoring wells, which are screened in appropriate stratigraphic horizons, surround the wellfield pattern area to detect any lixiviant that may migrate out of the production zone, either vertically and horizontally. In a properly designed and operated system, these "excursions" of ISL solutions should be rare due to the confining layers above and below the ore zone and the continual movement of lixiviant toward centrally-located recovery wells.

Following the completion of uranium recovery in a particular mining area, the affected groundwater is restored through various methods to appropriate standards, which may include pre-operational baseline conditions or pre-mining class-of-use limits.
ISL extraction allows the recovery of deep, low-grade sandstone uranium deposits which currently are not economically recoverable by conventional mining methods. For the most part, previous operating experience has shown that uranium can be economically recovered and that groundwater quality can be restored to baseline or pre-mining class-of-use standards.

There are many environmental advantages to ISL recovery of uranium over conventional mining methods, such as open pit mining or underground mining. Conventional mining methods can produce a significant impact on the environment due to, among other things, the resultant open pits and spoil piles. The in situ method leaves underground aquifers physically intact, rather than mined out as in conventional operations. The greatest impact of the ISL extraction method is a temporary effect on the ore zone groundwater quality. This impact is termed temporary because, in most instances, the groundwater can be restored to appropriate standards.

3.2 The Orebody

The uranium deposit at the Crow Butte site is a roll-front deposit, similar to those in the Wyoming basins. The uranium was precipitated as mineral coatings on sand grains and within pore spaces in the host rock, in several long, sinuous roll fronts that are found within the lower subunits of the Basal Chadron Sandstone. Precipitation of the uranium resulted when the oxidized water containing the uranium encountered reducing conditions. These reducing conditions are probably the result of hydrogen sulfide, and to a lesser degree, organic material and pyrite, that were present in the aquifer.

The Basal Chadron Sandstone is locally divided into subunits by thin clay beds that confine the uranium-bearing waters into several distinct hydrologic subunits. These clay beds are laterally continuous for hundreds of feet, and they controlled the precipitation of the uranium over even greater distances. As a result, the mineralized zone of the Basal Chadron is essentially restricted to the lower 12 m (40 ft) of the Basal Chadron. The physical shape of the ore deposit is dependent on the local permeability of the sandstone matrix, its continuity and distribution in the geologic unit, and the former location of the oxidation/reduction front in the paleo aquifer. The recoverable ore is located in a portion of the Basal Chadron, which ranges from 300 to 450 m (1000 to 1500 ft) wide. The orebody ranges in grade from 0.05 to greater than 0.5 percent U_3O_8, with an average grade of 0.26 percent equivalent U_3O_8 and 0.31 percent chemical U_3O_8.

For ISL to be successful, the ore deposit must (1) be located in the hydrologically saturated zone, (2) be bounded above and below by suitable confining layers, (3) have adequate permeability, and (4) be amenable to chemical leaching. As described in the previous chapter, the production area in the Crow Butte Uranium Project has favorable hydrogeological and structural characteristics to allow the in situ leaching of uranium. The hydrogeology and aquifer characteristics indicate that ISL solutions will be contained within the production zone. The operational history from both the R&D and commercial projects supports this conclusion.
3.3 **Wellfield Design and Operation**

3.3.1 **Wellfield Design**

Currently, there are five mine units (MUs), designated as MUs 1–5, which have defined at the site (a sixth wellfield (MU-6) has been constructed but has yet to operate). Of these five, MUs 1 and 2 are in restoration, while MUs 3, 4, and 5 are in production. The locations of these wellfields are shown in Figure 3-1, and relevant characteristics of each MU is provided in Table 3-1. Each of the MUs is designed to have about the same quantity of reserves. Due to the possibility that the orebody boundaries will change as a result of future ore reserve information, CBR determines the actual configuration of the various wellfields, as well as the final boundaries of the MUs, when the production and injection wells are installed. The ore is typically extracted through the use of a series of five- or seven-spot patterns installed over the mineralized section of the formation. A single five-spot pattern is roughly rectangular in shape, consisting of four injection wells surrounding a single central recovery well. Spacing between the wells in any five-spot will range from 12 to 36 m (40 to 100 ft), depending on the topography and ore characteristics. Figure 3-2 shows a typical wellfield pattern for the project. Each MU contains a number of wellfield houses (two to seven) from which trunklines from the process circuit and injection and recovery solutions are distributed to the injection and production wells. Barren injection lixiviant is recharged with oxygen in the wellhouses for re-injection. All injection and manifold piping is either polyvinyl chloride (PVC), high density polyethylene (HDPE) with butt-welded joints, or equivalent piping, that is leak tested and buried prior to production operations. Injection and production solutions are monitored at the wellfield houses with totalizing flow meters to detect leaks in the injection/production circuit.

<table>
<thead>
<tr>
<th>Mine Unit</th>
<th>Thickness m (ft)</th>
<th>Number of Patterns</th>
<th>Pattern size m² (ft²)</th>
<th>Porosity</th>
<th>Pore Volume liters (gallons)</th>
<th>Mine Unit Total Area ha (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU-1</td>
<td>6.0 (19.6)</td>
<td>38</td>
<td>987 (10,624)</td>
<td>0.29</td>
<td>64.6 (17.2) million</td>
<td>3.8 (9.3)</td>
</tr>
<tr>
<td>MU-2</td>
<td>5.0 (16.3)</td>
<td>52</td>
<td>910 (9800)</td>
<td>0.29</td>
<td>67.6 (18.0) million</td>
<td>4.7 (11.7)</td>
</tr>
<tr>
<td>MU-3</td>
<td>3.9 (12.8)</td>
<td>57</td>
<td>955 (10,284)</td>
<td>0.29</td>
<td>57.9 (15.4) million</td>
<td>5.4 (13.4)</td>
</tr>
<tr>
<td>MU-4</td>
<td>4.0 (13.0)</td>
<td>96</td>
<td>1000 (10,765)</td>
<td>0.29</td>
<td>109.4 (29.1) million</td>
<td>9.6 (23.7)</td>
</tr>
<tr>
<td>MU-5</td>
<td>4.6 (15.0)</td>
<td>183</td>
<td>702 (7557)</td>
<td>0.29</td>
<td>169.1 (45.0) million</td>
<td>12.9 (31.8)</td>
</tr>
<tr>
<td>MU-6</td>
<td>6.1 (20.0)</td>
<td>175</td>
<td>929 (10,000)</td>
<td>0.29</td>
<td>285.3 (75.9) million</td>
<td>16.3 (40.2)</td>
</tr>
</tbody>
</table>

3.3.2 **Pre-operational Groundwater Sampling**

CBR is required to establish pre-operational baseline groundwater quality in an MU prior to mining in that MU. Within the MU, pre-operational baseline groundwater quality data is required.
to be established at the following minimal density: (1) one production or injection well per 1.6 ha (4 acres), with a minimum of 10 restoration wells per MU, (2) one upper aquifer (Brule) monitor well per 2 ha (5 acres), and (3) all perimeter monitor wells. Perimeter monitor wells are completed in the production zone horizon (i.e., the Basal Chadron), and they surround the MU at a distance of 91 m (300 ft) or less from the mineralized zone and not more than 122 m (400 ft) from one another (CBR, 1995). Baseline groundwater quality data is not collected from the underlying Pierre Shale, because groundwater monitoring is not conducted in this formation, due to its thickness and hydraulic properties. The normal spacing of the ore zone wells, and the shallow zone and perimeter monitoring wells is shown schematically in Figure 3-2.

Three samples are collected from each well, with two-week intervals between sampling, and the samples are analyzed for a suite of 35 parameters (Table 3-2). Based on the data from the upper aquifer and perimeter monitor wells, upper control limits (UCLs) for each MU are established, while the production and injection well data are used to set restoration standards. The purposes of UCLs and restoration standards are discussed in Sections 3.7.1 and 4.1, respectively.

<table>
<thead>
<tr>
<th>Table 3-2. Baseline water quality indicators (CBR, 1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Indicators</td>
</tr>
<tr>
<td>Specific Conductivity</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Common Constituents</td>
</tr>
<tr>
<td>Ammonia (NH$_4$ as N)</td>
</tr>
<tr>
<td>Bicarbonate</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Carbonate</td>
</tr>
<tr>
<td>Trace and Minor Elements</td>
</tr>
<tr>
<td>Arsenic</td>
</tr>
<tr>
<td>Barium</td>
</tr>
<tr>
<td>Boron</td>
</tr>
<tr>
<td>Cadmium</td>
</tr>
<tr>
<td>Chromium</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Radionuclides</td>
</tr>
<tr>
<td>Radium-226</td>
</tr>
</tbody>
</table>
Figure 3-1. Locations of Mine Units 1 through 5 at the Crow Butte Uranium Project (from CBR, 1995)
Figure 3-2. Typical wellfield pattern and monitoring well locations at the Crow Butte Uranium Project (from CBR, 1995)
Under CBR's current license, CBR is required to submit the baseline groundwater data to NRC at least two months prior to mining in an MU, in support of a license amendment request to establish UCLs and restoration standards for the MU. With the renewal of SUA-1534 under the performance-based format, the licensee's SERP will have the responsibility for evaluating the baseline data, establishing UCLs and restoration criteria, and evaluating the proposed monitoring program for compliance with existing license conditions, prior to mining in future MUs. NRC will review this information during its routine site inspections.

3.3.3 Well Construction and Testing

Typical construction methods for production, injection, and monitoring wells at the Crow Butte Uranium Project are described in detail in the LRA. These well completion methods are illustrated in Figures 3-3 through 3-5. The licensee will be required by license condition to construct all wells in accordance with the methods described in the LRA.

Following completion, well integrity is tested to ensure that the wells are appropriately completed and free of leaks that could cause lixiviant to enter casing intervals other than those in the ore zone. As described in the LRA, the integrity tests are performed using a pressure-packer test. This test requires placement of one or two packers within the well casing, with the bottom packer set just above the well screen and the upper packer (or a well cap) set at the wellhead. Thus, these packers segregate the non-perforated section of the well casing. Then, the bottom packer is inflated and the casing is pressurized to 125 percent of the maximum operating pressure. The well is then closed in and the pressure is maintained for a minimum of 20 minutes. If the well is unable to sustain at least 90 percent of the pressure for 20 minutes, the well is considered to have failed the integrity test. Wells not passing the integrity tests will be reworked and tested again. Repeated failure of the integrity testing will result in the well being plugged and abandoned by CBR in accordance with State requirements. The plugged well will prevent movement of fluids from the injection horizon into aquifers containing fresh and/or usable water. The integrity testing program also will ensure that fluids injected and recovered during mining will not be lost from the well due to failures of the casing. In accordance with its NDEQ UIC permit, CBR also conducts, in addition to initial integrity testing, mechanical integrity testing following well servicing and at least once every five years during the operational life of a well.

Currently under SUA-1534, CBR has been allowed to use a single point resistance test in place of the packer-pressure testing method. However, the staff states in NUREG-1569 (NRC, 1997) that it does not find sole reliance on single point resistance to be an acceptable method for determining mechanical well integrity. Therefore, NRC will modify this condition in the renewal license to allow the use of single point resistance only in conjunction with another approved method of well integrity testing. CBR agreed to this modification, by telephone, on November 12, 1997.

Under SUA-1534, CBR also is required to conduct initial mechanical integrity testing, as described above, on each injection and production well prior to their utilization and following any service. This condition will be clarified in the renewal license to require testing following service with equipment or procedures that could damage the well casing. In addition, to provide consistency with the provisions of the NDEQ UIC permit and the staff's recommendations in
NUREG-1569 (NRC, 1997), NRC also will require, by license condition, that repeat integrity testing be conducted at least once every five years for all operating wells. CBR agreed to this condition, by telephone call, on November 10, 1997.

3.4 Uranium Recovery Process

Uranium recovered during the extraction operation is processed as shown in Figure 3-6. The recovery process generally consists of six primary steps: (1) in situ uranium dissolution through injection and recovery of an oxidized, carbonate lixiviant; (2) stripping of the uranium from the pregnant lixiviant by sorption of uranium complexes onto IX resin; (3) reconstitution of the barren lixiviant by the addition of bicarbonate and oxygen and subsequent re-injection; (4) elution of the uranium complexes from the IX resin; (5) precipitation and settling of the uranium; and (6) filtering, de-watering, drying, and packaging of the uranium yellowcake for shipment. The general layout of the processing plant is shown in Figure 3-7.

The lixiviant used at the Crow Butte Uranium Project begins with local groundwater, to which CBR adds an oxidant (oxygen or hydrogen peroxide) and a complexant (sodium carbonate/bicarbonate). The typical composition of the injection lixiviant is given in Table 3-3. To ensure that the formation responds geochemically as previous experience indicates, the licensee will continue to be required, by license condition, to use a lixiviant composed of native groundwater, sodium carbonate/bicarbonate, and oxygen or hydrogen peroxide.

The lixiviant is gathered in the injection manifold at the wellhouse through buried pipelines and injected into the ore zone by the injection wells. Downhole injection pressures will be maintained below formation fracture pressures to avoid hydrofracturing the aquifer and promoting leakage into the overlying units. Ambient pressures at depth may exceed the strength rating of the PVC pipe, but the borehole cement is expected to protect the casing from adverse pressure effects. CBR estimates that the formation fracture pressure gradient at the site is 14.25 kilopascals per meter (kPa/m) (0.63 pounds per square inch per foot [psi/ft]) of well depth. For the typical operating depths at the Crow Butte site, this means that formation fracture pressures at the depth of the Basal Chadron aquifer range from about 1740 kPa at 122 m (250 psi at 400 ft) to 3475 kPa at 244 m (500 psi at 800 ft). These values provide a safety factor for limiting operating injection pressures. CBR limits injection pressures to the pressures at which well integrity was tested minus the safety factor, typically to injection pressures less than 690 kPa (100 psi). CBR also continuously monitors the injection pressure (CBR, 1995).

In the subsurface, the lixiviant oxidizes uranium from the 4+ to the 6+ oxidation state and dissolves the oxidized uranium as a uranyl-carbonate aqueous species. Other trace metals such as arsenic, selenium, vanadium, iron, and manganese also are mobilized during the leach process. The pregnant lixiviant is recovered through the production wells, piped to the wellfield house, and from there, sent by buried PVC trunklines to a surge tank in the processing plant, from where it is pumped into a series of IX columns. In the IX columns, the uranium, and to a lesser extent, other metals, are adsorbed onto the resin beads. Those metals which are not adsorbed on the resins will be recirculated into the wellfield. The solution exiting the IX columns is depleted in uranium and has low lixiviant strength. Therefore, additional oxidizing and complexing agents are added to the stream prior to reinjection.
Figure 3-3. Well completion method one at the Crow Butte Uranium Project (from CBR, 1995)
Figure 3-4. Well completion method two at the Crow Butte Uranium Project (from CBR, 1995)
Figure 3-5. Well completion method three at the Crow Butte Uranium Project (from CBR, 1995)
Table 3-3. Typical lixiviant chemistry.
All units in mg/L except pH, which is in standard units. (from NRC, 1989a)

<table>
<thead>
<tr>
<th>Species</th>
<th>Range</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Na</td>
<td>400</td>
<td>6000</td>
</tr>
<tr>
<td>Ca</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td>Mg</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>CO₃</td>
<td>0.5</td>
<td>2500</td>
</tr>
<tr>
<td>HCO₃</td>
<td>400</td>
<td>5000</td>
</tr>
<tr>
<td>Cl</td>
<td>200</td>
<td>5000</td>
</tr>
<tr>
<td>SO₄</td>
<td>400</td>
<td>5000</td>
</tr>
<tr>
<td>U₂O₅</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>TDS</td>
<td>1650</td>
<td>12,000</td>
</tr>
<tr>
<td>pH</td>
<td>6.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>
Figure 3-6. Flow sheet of the uranium recovery process at the Crow Butte Uranium Project (from CBR, 1995)
Figure 3-7. Generalized layout of the main processing facility at the Crow Butte Uranium Project (from CBR, 1995)
Currently, CBR is not authorized, by license condition, to exceed a maximum processing flowrate of 18,930 Lpm (5000 gpm). In addition, CBR currently is limited by license condition to a maximum production rate of 907,185 kg (2 million lbs) of yellowcake per year. These will continue to be license conditions in the renewal license.

3.5 Description of the Existing Main Process Plant

The processing circuit is housed in a building approximately 83 m long by 37 m wide (275 ft by 120 ft). In addition to processing tanks and equipment, the building contains a lunchroom, office, and laboratory space. A diagram of the plant is shown in Figure 3-7. The equipment in the main process plant can be assigned to one of the following process operations: lixiviant injection, filtration, IX, elution/precipitation, and dewatering/drying.

The lixiviant recovery system consists of two recovery surge tanks, which are used for temporary storage of the recovered lixiviant prior to its being pumped to the IX system. The IX system consists of two sets of four columns operated in a carousel configuration. The uranium loading process is continuous, but the elution process is operated on a batch basis. The depleted lixiviant is pumped through a system of filters to remove any formation particulates or pipe scale and is then pumped to the lixiviant injection system. The injection system consists of injection surge tanks and associated injection pumps. The tanks are made of fiberglass-reinforced polymer (FRP), and the injection is through a set of centrifugal pumps.

The elution/precipitation circuit consists of the barren eluant tanks and the acidizer/precipitator tanks. The eluant is pumped from the barren eluant tanks to the IX columns, and the pregnant eluant is transferred to the acidizer/precipitator where the uranium is precipitated. The precipitated uranium is de-watered and washed using a vacuum bed filter or equivalent. The yellowcake is dried on site using a vacuum dryer.

3.6 Generation and Management of Wastes

3.6.1 Gaseous Effluents

Air emissions from the commercial operations will be primarily in the form of radon-222. Radon-222 is present in the orebody and is formed by the decay of radium-226. The radon dissolves in the lixiviant as it travels through the orebody to production wells, and when the lixiviant is processed at the surface, radon is released from solution. Radon can potentially be released to the environment either from the wellfields or the processing plant. While injection wells are generally closed and pressurized, they are periodically vented and radon-222 is released. At the processing facility, radon-222 is vented from recovery surge tanks and the IX columns into a manifold and emitted to the atmosphere outside the plant via an induced draft fan.

The yellowcake drier is operated under negative pressure. There are no particulate emissions, because (1) particulates are controlled by bag filters and (2) moisture-laden air is recirculated through a closed-loop condenser where water condenses and entrains any remaining particulates.
Finally, there will be small quantities of gases, such as CO$_2$ and O$_2$, released from gas traps on the injection well pipelines.

As discussed in Section 3.7.3, CBR has been and will be sampling for specific radionuclides at seven locations surrounding the site. The results of this sampling, which are summarized in Section 5.7.2, are submitted to NRC on a semiannual basis.

3.6.2 Liquid Wastes

Liquid wastes from operations are generated from three sources: (1) wellfield development, (2) processing plant operations, and (3) aquifer restoration activities. During the first half of 1997, approximately 11.7 million L (3.1 million gal.) of plant-generated and wellfield development waste water was produced. In addition, during this same period, approximately 576 million L (152.2 million gal.) of restoration water was produced (CBR, 1997d).

CBR is required under its current license to return all liquid effluents from process buildings and other process waste streams, with the exception of sanitary wastes, to the process circuit, or to dispose of the effluents through any of the NRC-approved waste disposal options. Currently, CBR has three NRC-approved options for the disposal of liquid wastes: (1) solar evaporation ponds, (2) land application, or (3) deep well injection. To ensure that all liquid wastes will be accounted for, CBR will continue to be required by license condition to return all liquid effluents to the process circuit or to the appropriate disposal system.

3.6.2.1 Solar Evaporation Ponds

As of November 1997, five evaporation ponds were in use: R&D Cells 1 and 2, and Commercial Ponds 1, 3, and 4 (CBR, 1997c). These ponds are located as shown in Figure 2-2. The two R&D cells were constructed in 1985, with a 34 mil hypalon liner placed on top of 15.2 cm (6 in.) of sand and a 2:1 (horizontal to vertical) interior and exterior embankment slopes. The maximum depth of these ponds is 4.6 m (15 ft). The three commercial development ponds were completed in 1990 (Ponds 3 and 4) and 1992 (Pond 1). Ponds 3 and 4 have a 20 mil PVC bottom liner, an intermediate geonet, and a 60 mil HDPE top liner, with a maximum depth of 5.3 m (17.5 ft). In Pond 1, a 30 mil very low density polyethylene bottom liner was installed with an intermediate geonet and a 60 mil HDPE top liner. The overall depth of Pond 1 is 5.2 m (17 ft) from crest to pond bottom. The exterior slopes for all three commercial ponds are 2.5H:1V, and the interior slopes are 2H:1V.

At maximum capacity, the total allowed storage of the current five ponds is approximately 151 million L (39.9 million gal.). As of November 1, 1997, the pond system contained approximately 115.5 million L (30.5 million gal.) of waste water, a value representative of normal operating levels (CBR, 1997c). The total estimated evaporative capacity for the five ponds is 36.7 million L/yr (9.7 million gal./yr). Construction of two additional commercial ponds has been approved by NRC and, if installed, would increase capacity to 280 million L (74 million gal.). License conditions addressing the construction of these ponds will continue to be required in the renewal license.
CBR is required currently, by license condition, to maintain freeboards of 0.9 m (3 ft) in the R&D ponds and 1.5 m (5 ft) in the commercial ponds. These freeboard limits are designed to allow the evaporation ponds to accommodate a design precipitation event (63.5 cm [25 in.]) as well as a 97 km/hr (60 mi/hr) wind-generated wave with an engineering safety factor of 0.55 m (1.8 ft). Additionally, CBR is required to maintain sufficient reserve capacity in the evaporation pond system to allow the transfer of one pond's contents to the other ponds in the event of a leak. The renewal license will retain these conditions.

All ponds have a leak detection system consisting of underdrains which connect to leak detection standpipes. As discussed in Section 3.7.2, CBR must analyze water contained in the standpipes for leak indicator parameters any time 15.2 cm (6 in.) or more of fluid is present. In the event of leak verification, CBR is also required in SUA-1534 to take specific actions, including notification of NRC. These conditions will be retained in the renewal license.

3.6.2.2 Land Application of Treated Water

While land application of treated process water has been approved by NRC as a waste disposal option for the Crow Butte Uranium Project, CBR has not employed this option to date. If, however, CBR chooses to employ this disposal option in the future, such land application will be restricted by license condition to two areas described in previous CBR submittals. Area 1 is a 25 ha (60 acre) area located approximately 2.4 km (1.5 mi) northwest of the processing plant (NE¼, Sec. 13, T31N R52W), while Area 2 is a 16 ha (40 acre) plot located immediately adjacent to and south of the pilot processing plant (SE¼, Sec. 19, T31N R51W). Up to 145.7 million L (38.5 million gal.) of treated water per year could be disposed through land application. This quantity includes water purged during the construction and development of wells at the project and water treated by reverse osmosis. The release limits for various ionic species, metals, and some radionuclides are established by appropriate NRC, EPA, and State of Nebraska standards.

However, as stated, CBR has yet to implement land application of treated process water at the Crow Butte site.

3.6.2.3 Deep Well Injection

CBR disposes of some process fluids generated during operations via a Class I non-hazardous waste injection well installed to a total depth of about 1200 m (3925 ft). The fluids are injected into the Jurassic-aged Sundance and Morrison Formations at 75 to 375 Lpm (20 to 100 gpm) through perforations in the well casing at depths of 1075 to 1175 m (3528 to 3855 ft). The Sundance and Morrison Formations are located below the lowermost underground source of drinking water (USDW), and contain brines that make the water unsuitable for a USDW under either Federal or State of Nebraska regulations. Fluids disposed in this manner are derived from two sources: the production bleed and the eluant bleed. The injection stream typically consists of a sodium-chloride brine, high in TDS, with significant amounts of sulfate and the radionuclides uranium and radium-226. CBR may add scale and corrosion inhibitors to prevent fouling of the injection well.
NRC approved deep well injection of liquid process wastes on October 6, 1994, authorizing CBR to dispose of process fluids in the basal unit of the Sundance Formation beneath the site, provided that the State of Nebraska issued the necessary underground injection permit and found that the potential for contamination of other usable aquifers was minimal. In approving deep well injection as a waste disposal option, the NRC staff determined that the average concentration limits of the process fluids to be injected (10 mg/L for uranium and 1000 pCi/L for radium-226) were comparable to levels allowed by the staff at other sites approved for this method of waste disposal. On June 20, 1995, the State of Nebraska issued UIC Permit No. NE0206369 to CBR, authorizing the installation of a Class I non-hazardous waste injection well in S3/4, Section 19, T31N R51W.

On February 28, 1996, the staff approved injection of process fluids into the overlying Morrison Formation also; CBR's State permit was modified to authorize injection into the Morrison on April 17, 1996. Finally, on July 19, 1996, the staff approved revised concentration limits for uranium (25 mg/L), radium (5000 pCi/L), and sulfate (from 5000 mg/L to 10,000 mg/L) in the process fluids to be injected, finding that the new limits were still comparable with those approved for other licensed ISL operations.

Currently, CBR is required, by license condition, to operate its deep injection well in accordance with a Hydrogeologic Review and Engineering Design Report, submitted to NRC on August 24, 1993, and subsequently modified. This will continue to be a condition in the renewal license.

3.6.3 Solid Wastes

Sanitary wastes from the restrooms and lunchroom will be disposed in a septic system regulated by the State of Nebraska. Solid wastes generated at the site typically consist of spent resin, empty reagent containers, miscellaneous pipes and fittings, and domestic trash. These wastes will be classified as contaminated or non-contaminated waste, according to their radiological survey results.

Contaminated solid waste is separated into two categories. The first category is waste which has some salvage value or can be decontaminated to below unrestricted release limits. This type of waste may include piping, valves, instrumentation, equipment, and any other item that can be decontaminated. All decontaminated wastes will be inspected and surveyed by the CRSO or the health physics technician prior to release from the site to ensure that appropriate decontamination procedures have been observed. CBR stated that the release limits for decontaminated materials will be those specified in NRC Branch Technical Position “Guidelines for Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Licenses for Byproduct or Source Material,” dated September 1984, will be released from the site. This guidance document was updated in May 1987 (NRC, 1987), and therefore, the licensee will be required to follow this more recent version, or a suitable alternative procedure approved by NRC prior to any such release. CBR agreed to this license condition, by telephone, on November 10, 1997.

The second category of waste includes items that have no salvage value and have been contaminated during uranium recovery operations. The most common example of this type of
waste is radium-contaminated filters (CBR, 1995). These materials will be stored in a secure area until such time as they can be shipped to a site licensed to accept such waste for disposal.

Records of equipment and corresponding contamination levels will be maintained for all items released from the site. Any item having contamination levels that exceed regulatory limits will be disposed at a site approved to receive byproduct waste materials, as discussed below. Transportation of all material to the byproduct disposal facility will be handled in accordance with U.S. Department of Transportation and NRC regulations (49 CFR 173.389 and 10 CFR Part 71, respectively).

Currently, CBR is authorized, by license condition, to dispose its contaminated wastes at IUSA’s White Mesa uranium mill in Blanding, Utah. With this renewal, CBR will be allowed to dispose of byproduct waste materials at any site authorized by NRC or an NRC Agreement State to accept such material for disposal. CBR will be required to maintain onsite, for NRC inspection, a copy of its agreement with the disposal site. In the event CBR’s agreement with IUSA expires or is terminated, CBR will be required to notify NRC within seven days of the expiration or termination date. A new agreement must be submitted to NRC for approval within 90 days of expiration or termination, or CBR will be prohibited from further lixiviant injection.

Non-contaminated solid wastes will be collected at the site on a regular basis and disposed in the nearest sanitary landfill. The waste is surveyed prior to disposal to ensure that no contaminated waste is released from the site.

3.7 Monitoring Programs

CBR conducts regular monitoring of groundwater, the evaporation ponds, and the surrounding environment to assess and mitigate impacts from commercial operations to individuals living near the facility and to the environment.

3.7.1 Hydrologic Monitoring

As discussed in Section 3.3.2, CBR has been and will continue to be collecting baseline groundwater quality data in each mine unit, from the Basal Chadron and Brule aquifers, prior to mining. With this data, upper control limits (UCLs) are calculated for each well for each of five excursion indicator parameters (chloride, sulfate, sodium, conductivity, and alkalinity). UCLs are calculated as 20 percent above the maximum baseline value measured for that parameter from the three samples taken from the well.

During uranium recovery operations, the baseline wells are sampled on a biweekly basis to determine whether lixiviant is migrating beyond the extraction zone. The samples are analyzed for the indicator parameters, with the results compared against the UCLs for the well. An excursion of lixiviant is assumed if two UCLs in any monitor well are exceeded, or if a single UCL for a monitor well is exceeded by 20 percent. If such an exceedance is observed in the initial sample, the well is placed on excursion status if either of two verification samples also indicates that a UCL(s) has been exceeded. If neither the second or third sample indicate exceedance of the UCLs, the first sample is considered in error.
Should a well be placed on excursion status, CBR is required to notify NRC within 24 hours, to institute corrective actions, and to increase the sampling frequency in the affected well(s) to once every seven days until the excursion is corrected. CBR also is required to submit a written status report to NRC within two months of excursion confirmation, providing a discussion of the excursion event, the corrective actions taken, and the results observed. An excursion is not considered concluded until the concentrations of the indicator parameters are below the appropriate UCLs for three consecutive weekly samples.

If corrective actions have not been effective by the time the 60-day excursion report has been submitted, CBR is required currently, by license condition, to terminate injection of lixiviant within the wellfield on excursion until such time as aquifer cleanup is complete. This condition will be retained in the renewal license.

Quality Assurance (QA) programs will be maintained by the CRSO. All QA programs will be conducted according to the Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Normal Operations) - Effluent Streams and the Environment (NRC, 1979). Standard QA procedures will be maintained throughout the project life.

The history of excursions during commercial operations at the Crow Butte Uranium Project is presented in Section 5.4.2.1. Additional aspects of CBR's groundwater sampling are identified in Table 3-4.

3.7.2 Evaporation Pond Monitoring

CBR has implemented an Evaporation Pond Onsite Inspection Program (CBR, 1996b) to conduct various inspections of the evaporation pond system on daily, weekly, monthly, quarterly, and annual bases during operations. These inspections include the following:

- **Daily:** visual inspection of pond embankments, and measurement and documentation of water depths in each pond;

- **Weekly:** visual inspection of perimeter fencing, inlet pipes, and the pond liner, and measurement and documentation of fluid levels in the underdrains and leak detection systems;

- **Monthly:** visual inspection of piping from the plant building to the ponds and the diversion channels;

- **Quarterly:** visual inspection of pond embankments for settlement, slope irregularities, vegetation growth, rill and gully formation, and documentation of any evidence of seepage or of any changes to upstream watershed areas which may affect runoff to the ponds; and

- **Annually:** technical evaluation of the pond system, surveys of the pond embankments, and reviews of inspection records conducted over the course of the year.
Currently, CBR is required, by license condition, to sample fluid from the leak detection system standpipes if more than 15.2 cm (6 in.) is detected and to analyze the fluid for leak indicators. If a leak is verified on the basis of analysis results, CBR is required to notify NRC within 48 hours and to begin to transfer the contents of the leaking pond to another pond(s) so that remedial actions can be taken. While these actions are on-going and for a two-week period following repairs, CBR also is required to analyze water quality in the affected standpipe(s) once every seven days for the leak indicators. Finally, CBR must submit a written report to NRC within 30 days of leak verification, reporting the analytical data collected, and describing the cause of the leak, the mitigative actions taken, and the results of those actions.

NRC will continue to retain these monitoring requirements in the renewal license. The results of evaporation pond leak detection monitoring during commercial operations is provided in Section 5.4.2.2.

3.7.3 Environmental and Effluent Monitoring

CBR has implemented a environmental and effluent monitoring program for the R&D site and for the commercial ISL operations. The program consists of a number of monitoring sites used to sample surface waters, groundwater, sediments, soils, and the air for various radionuclides, in an effort to determine the impacts on the environment from operations. The proposed site environmental and effluent monitoring program is outlined in Table 3-4.

In its submittal dated July 28, 1997, CBR proposed several modifications to its existing monitoring program. These modifications included: (1) changing the exchange frequency for the environmental radon detectors from quarterly to semiannually; (2) ending sampling for Th-230 in air particulate and stream sediment samples; and (3) discontinuing vegetation sampling. The staff finds these requests to be acceptable for the following reasons:

- In reducing the radon detector exchange frequency to semiannual, CBR will be able to achieve the lower level of detection (LLD) of 0.2 pCi/L recommended in Regulatory Guide 4.14 (NRC, 1980), while still allowing CBR to meet the semiannual reporting requirements under 10 CFR 40.65 and the requirements for annual dose calculations under 10 CFR Part 20.

- CBR uses a vacuum dryer, which theoretically reduces air particulate emissions from the dryer to zero. Measured airborne concentrations of Th-230 over the seven years of commercial operations at the Crow Butte site have been one percent or less of the 10 CFR Part 20 limit. Th-230 concentrations in annual stream sediment samples also have been consistently low (between 0.2 and 0.4 pCi/g) during the period of commercial operations.

- In Regulatory Guide 4.14 (NRC, 1983), the NRC staff recommends that vegetation sampling be conducted only if dose calculations indicate that the ingestion pathway from grazing animals is a potentially significant exposure pathway (i.e., if the predicted dose to an individual would exceed five percent of the applicable protection standards). CBR's MILDOS-AREA modeling results show that doses from the ingestion of affected meat and milk fell well below the five percent criterion.

SWVP-007583
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Location</th>
<th>Type</th>
<th>Number</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (Radon)</td>
<td>Nearest residences and in the prevalent wind direction</td>
<td>Continuous</td>
<td>6</td>
<td>Semiannually</td>
<td>Rn-222</td>
</tr>
<tr>
<td></td>
<td>Environmental control location near Crawford, NE</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air (Particulates)</td>
<td>Same locations as radon monitoring</td>
<td>Continuous</td>
<td>7</td>
<td>2 weeks per month</td>
<td>U-nat, Ra-226, Pb-210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>when dryer in use</td>
<td></td>
</tr>
<tr>
<td>Surface Soil</td>
<td>Plant site before topsoil removal</td>
<td>Grab</td>
<td>2</td>
<td>Once</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td>(top 5 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant site after topsoil removal</td>
<td>Grab</td>
<td>2</td>
<td>Once</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaporation ponds before excavation</td>
<td>Grab</td>
<td>2</td>
<td>Once</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air sampling stations</td>
<td>Grab</td>
<td>7</td>
<td>Once</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td>Subsurface Soil</td>
<td>Plant site</td>
<td>1/4 meter composites to one meter</td>
<td>1</td>
<td>Once</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Water supply wells within 1 km of area wellfield</td>
<td>Grab</td>
<td>1</td>
<td>Quarterly</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td></td>
<td>Each monitor well</td>
<td>Grab</td>
<td>1</td>
<td>Quarterly</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td>Surface Water</td>
<td>Each stream passing through wellfield area (one up-stream and one down-stream)</td>
<td>Grab</td>
<td>2</td>
<td>Quarterly</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td></td>
<td>Each water impoundment in wellfield area</td>
<td>Grab</td>
<td>1</td>
<td>Quarterly</td>
<td>U-nat, Ra-226</td>
</tr>
<tr>
<td>Direct Radiation</td>
<td>Air sampling stations</td>
<td>Continuous</td>
<td>7</td>
<td>Quarterly exchange of dosimeters</td>
<td>External gamma</td>
</tr>
<tr>
<td>Sediment</td>
<td>Each body of water</td>
<td>Grab up-and downstream of wellfields</td>
<td>1 or 2</td>
<td>Annually</td>
<td>U-nat, Ra-226, Pb-210</td>
</tr>
</tbody>
</table>
Should CBR decide in the future to begin land application of treated effluents, the staff recommends that it also should implement vegetation sampling within the land-applied areas so that assumptions in the MILDOS-AREA modeling concerning soil and plant uptake can be verified.

CBR is required, by license condition, to document the sampling and monitoring results, and to maintain such documentation for a period of at least five years. In addition, under 10 CFR 40.65, CBR is required to submit the results of the environmental and effluent monitoring program to NRC on a semiannual basis.

Finally, to ensure that a high quality sampling and analytical program is maintained, CBR is required, and will continue to be required, by license condition, to establish, review, and update standard operating procedures for all environmental monitoring required for the operation. These procedures are required to be reviewed by the CRSO on at least an annual basis, to determine that proper radiation protection principles are being applied.

4.0 GROUNDWATER RESTORATION, RECLAMATION, AND DECOMMISSIONING

4.1 Groundwater Restoration

After ore extraction is complete in a wellfield, groundwater restoration begins in the depleted ore zone, with the intent of reducing the concentration of mobilized constituents remaining in the groundwater. By license condition, the primary goal of restoration is to return the affected groundwater quality, on a MU average, to baseline conditions. This will continue to be so required in the renewal license.

If it is determined that a return to the pre-operational baseline is not reasonably achievable using best practicable technology, the secondary goal is to return the groundwater quality to a use consistent for which the water was suitable prior to the ISL operations, based on the class-of-use standards established by NDEQ.

4.1.1 Establishing Pre-operational Baseline Water Quality

As discussed in Section 3.3.2, CBR will collect baseline groundwater quality data prior to mining in each MU. This data is collected for the purposes of establishing both UCLs (see Section 3.7.1) and restoration standards for the MU. For the purposes of setting restoration standards, the data is required to be collected from the MU at a minimal density of one production or injection well per 1.6 ha (4 acres). As stated previously, the primary goal of restoration is to return the affected groundwater quality, on a MU average, to baseline conditions. Average pre-operational baseline water quality for MUs 1-5 is provided in Table 2-3.

With the issuance of a performance-based license, the SERP will have the responsibility of reviewing the baseline groundwater data and establishing restoration standards for subsequent MUs prior to mining in those MUs. CBR will continued to be required, by license condition, to collect the appropriate data at the required density.
4.1.2 Groundwater Restoration Methodology

A schematic of the groundwater restoration process is shown in Figure 4-1. Based on experience gathered during the R&D project and the on-going restoration of MUs 1 and 2, CBR has outlined in the LRA and in the NRC-approved groundwater restoration plan (CBR, 1996a), four basic methods for groundwater restoration that will be used at the Crow Butte Uranium Project:

a. Groundwater Transfer

In this method, pre-operational groundwater is recovered from an MU starting production and injected into the MU where restoration is commencing in order to dilute the higher TDS groundwater. In return, higher TDS groundwater from the MU in restoration is recovered and injected into the MU that will be starting production. The intent of this direct transfer is to lower the TDS in the MU being restored by displacing water affected by ISL operations with baseline quality water.

b. Groundwater Sweep

In this process, water is pumped without injection from the wellfield, causing an influx of baseline quality groundwater from the perimeter of the MU which sweeps the affected portion of the aquifer. This step is also intended to draw in the plume of affected water at the edges of the MU. This water is not returned to the wellfield, but instead is disposed through the waste water disposal system.

c. Groundwater Treatment

This process consists of extracting water from the ore zone, treating it to improve the water quality and either re-injecting the cleansed water (the permeate) into the ore zone or disposing it in a manner described in Section 3.6.2. IX and reverse osmosis (RO) will be the methods used to treat the water, with IX used to remove uranium. After IX, if the permeate is re-injected, a reductant is added periodically to the permeate to induce, in the ore zone, the precipitation and immobilization of uranium and other trace elements that were dissolved during the extraction process.

A portion of the recovery water can be sent to an RO unit. Prior to treatment by RO, the water is filtered, radium is settled out by treatment with barium chloride (BaCl₂), and the pH is lowered to prevent calcium carbonate from plugging the RO membranes. The permeate from the RO unit is either re-injected or, like the concentrated brine that is also produced, disposed in a manner described in Section 3.6.2. CBR demonstrated the effectiveness of RO during the R&D phase of operations.
Figure 4-1. Schematic of the groundwater restoration process at the Crow Butte Uranium Project (from CBR, 1995)
d. **Wellfield Recirculation**

Following completion of all or some of the methods above, the treated groundwater is recirculated through the ore zone, by pumping from production wells and re-injecting the recovered solutions into the injection wells, to homogenize the groundwater.

Upon the completion of restoration in an MU, CBR will implement a groundwater stabilization monitoring program in which the restoration wells and any monitoring wells on excursion status will be sampled and assayed. Samples will be collected at a frequency of one sample per well per month for a period of six months. If all six samples show that restoration values for all wells are maintained during this period, CBR will consider restoration complete and will request of NRC and NDEQ that the MU be declared restored. If water quality is not stabilized, further restoration work may be required.

CBR will continue to be required, by license condition, to perform groundwater restoration in accordance with the currently approved groundwater restoration plan (CBR, 1996a).

4.1.3 Effectiveness of Groundwater Restoration

The typical rejection efficiency of the membranes used in the RO unit are provided in the LRA, with most of the analyzed constituents rejected at a 90 to 99 percent efficiency. The water is circulated through the unit several times to maximize efficiency. Data from the R&D operations indicate that the combination of IX, radium settling with BaCl₂, and RO reduces the concentration of most metals below detection limits, and common ions to below drinking water standards.

The success of R&D restoration efforts are discussed in detail in the staff’s 1989 EA (NRC, 1989a), and are summarized here. The R&D restoration criterion was to return the affected groundwater to a class-of-use standard rather than to the average baseline value as currently required. Table 4-1 shows the groundwater quality data for 30 groundwater parameters monitored during restoration of the R&D wellfields. Of these parameters, 21 were restored to equal or less than their baseline minimum value, but 9 were not (ammonia, manganese, molybdenum, two forms of nitrogen, lead, radium-226, uranium, vanadium, and zinc). However, the staff determined that the overall change in water chemistry was very small, and that the water from the R&D operation was suitable for any pre-operational use. On April 12, 1988, the staff approved the completion of restoration in R&D Wellfield No. 2. The total number of pore volumes (PV) required during the R&D restoration was approximately 19, with approximately 16.4 PV being re-injected.

As part of its annual surety update, CBR provides estimates for the quantity of groundwater to be treated and groundwater restoration costs. CBR currently estimates (CBR, 1997a) that groundwater restoration for the commercial MUs will involve the circulation of a total of only 6 PV. This value differs considerably from the 19 PV used in the R&D restoration, in part because CBR was exploring different treatment techniques during the R&D program and because it has gained additional restoration experience with two of its commercial MUs.
Table 4-1. Baseline water quality and restoration quality for the Crow Butte R&D site (NRC, 1989a). All units in mg/L unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Baseline</th>
<th>Baseline</th>
<th>Stabilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>As</td>
<td><0.001</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>B</td>
<td>0.87</td>
<td>0.95</td>
<td>0.93</td>
<td>0.84</td>
</tr>
<tr>
<td>Ba</td>
<td><0.1</td>
<td><0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>10.4</td>
<td>16.4</td>
<td>14.1</td>
<td>10.5</td>
</tr>
<tr>
<td>Cd</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Cl</td>
<td>176</td>
<td>301</td>
<td>202.6</td>
<td>169</td>
</tr>
<tr>
<td>Cr</td>
<td><0.005</td>
<td><0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Cu</td>
<td><0.01</td>
<td><0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>0.62</td>
<td>0.74</td>
<td>0.68</td>
<td>0.55</td>
</tr>
<tr>
<td>Fe</td>
<td><0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Hg</td>
<td><0.0002</td>
<td><0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>K</td>
<td>10.2</td>
<td>15.4</td>
<td>12.0</td>
<td>8.7</td>
</tr>
<tr>
<td>Mg</td>
<td>2.45</td>
<td>4.2</td>
<td>3.351</td>
<td>2.41</td>
</tr>
<tr>
<td>Mn</td>
<td><0.005</td>
<td>0.013</td>
<td>0.0085</td>
<td>0.023</td>
</tr>
<tr>
<td>Mo</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Na</td>
<td>387</td>
<td>470</td>
<td>404</td>
<td>333</td>
</tr>
<tr>
<td>NH₄ as N</td>
<td>0.17</td>
<td>0.40</td>
<td>0.29</td>
<td>0.62</td>
</tr>
<tr>
<td>Ni</td>
<td><0.01</td>
<td><0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>NO₂ as N</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
<td>0.014</td>
</tr>
<tr>
<td>NO₃ as N</td>
<td><0.01</td>
<td>0.21</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Pb</td>
<td><0.005</td>
<td><0.005</td>
<td>0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>pH (standard units)</td>
<td>8.30</td>
<td>8.64</td>
<td>8.39</td>
<td>7.91</td>
</tr>
<tr>
<td>Ra-226 (pCi/L)</td>
<td>32.8</td>
<td>1451.0</td>
<td>858.7</td>
<td>236.7</td>
</tr>
<tr>
<td>Se</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>SO₄</td>
<td>318</td>
<td>358</td>
<td>343</td>
<td>275</td>
</tr>
<tr>
<td>TDS</td>
<td>1106</td>
<td>1270</td>
<td>1153</td>
<td>972</td>
</tr>
<tr>
<td>Total Carbonate</td>
<td>347.6</td>
<td>374.9</td>
<td>362.8</td>
<td>306.1</td>
</tr>
<tr>
<td>U</td>
<td>0.053</td>
<td>0.245</td>
<td>0.111</td>
<td>1.316</td>
</tr>
<tr>
<td>V</td>
<td><0.01</td>
<td><0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Zn</td>
<td><0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>
MU-1 was placed into restoration on March 14, 1994. To date, the restoration program has involved (1) groundwater sweep to control mining solutions, (2) groundwater transfer (0.78 PV [51.1 million L (13.5 million gal.)]) from MU-4 into MU-1), (3) groundwater treatment with IX and RO (2.28 PV [148 million L (39.1 million gal.)]); and (4) the addition of sodium sulfate (Na$_2$S) to the RO permeate as a reductant. As of May 31, 1997, 20 of 39 well patterns in MU-1 have been returned to baseline conductivity. Treatment is anticipated to continue until April 30, 1998, at which point the restoration progress relative to other target parameters will be evaluated (CBR, 1997f).

MU-2 was placed in restoration on January 2, 1996. Restoration to date in MU-2 has involved treatment with IX to lower uranium concentrations. Treatment with RO will begin once restoration of MU-1 has been completed and is expected to take approximately two years (CBR, 1997f).

4.2 Reclamation and Decommissioning

4.2.1 Surface Reclamation

A certain level of reclamation activities will take place at the Crow Butte Uranium Project while new MUs are being developed. Reclamation activities in individual MUs will consist of returning disturbed lands to their pre-mining use.

All injection, production, and monitor wells will be plugged and abandoned prior to final closure of the site and after the groundwater restoration has been successfully completed. CBR uses an approved abandonment mud in well plugging. This mud is mixed in a cement unit and then pumped down the hose, which has been lowered to the bottom of the well casing using a reel. When the hose is removed, the casing is topped off and a cement plug is placed on top. Then, a hole is dug around the well and, at a minimum, the top meter (3 ft) of casing is removed. Finally, the hole is backfilled and the surface is re-vegetated.

In decommissioning wellfields, CBR first removes surface equipment, such as injection and production feed lines, electrical conduits, well boxes, and wellhead equipment. Some wellhead equipment, such as valves, meters, or control fixtures, is salvaged. All buried wellfield piping is removed. Piping that is not reusable is considered contaminated and is disposed at a licensed byproduct waste material disposal site.

The plant site and solar evaporation pond areas will experience more disturbance than the wellfield areas. The plant and pond areas will be reclaimed in a fashion similar to the wellfield areas after groundwater restoration has been successfully completed. Treatment and disposal of pond water will depend on its chemical and radiological characteristics at the time of decommissioning. Pond sludges and sediments will be removed from the evaporation ponds and loaded into dump trucks or drums for disposal at the licensed byproduct disposal site. The pond liners will then be cleaned to the degree possible. If, after cleaning, they are below the surface contamination limits, the liners will be released to an unrestricted area. If contamination limits are exceeded, pond liners will be cut into strips and transported to the byproduct disposal site. Materials in the leak detection system will be excavated and surveyed for contamination. If the leak detection system is not contaminated, it will be released for unrestricted use; otherwise, it will be disposed at the byproduct disposal site.
Soil may be compacted in some areas from the drilling and maintenance traffic. Well closure will also involve some surface disturbance immediately surrounding each well. The non-vegetated or disturbed areas, including roads, will be either plowed or disced to aerate the soil. Soil from the wellfields and beneath the evaporation ponds will be surveyed for contamination, using an appropriately spaced grid with spot checks around likely areas of contamination. Any soils contaminated in excess of the limits defined in Appendix A to 10 CFR Part 40, will be removed and transported to a licensed byproduct disposal site. Excess soil from the built-up plant base and pond embankments will be returned to the ponds as fill. Following this, land surface contours will be re-established. A final soil background survey will be conducted on areas prepared for surface reclamation on a grid spacing adequate to confirm cleanup to applicable standards.

Following soil contouring and surface reclamation, topsoil will be replaced on all areas disturbed by the processing plant and the evaporation ponds. A grass seed mixture and fertilizer will then be spread. Assistance will be obtained from the U.S. Natural Resources Conservation Service to determine the proper seed mix and rate of application. A period of one to two years will be required to establish a suitable grass cover. During this time, fences will be maintained to keep livestock off the area and away from new vegetation. After that time, disturbed land may be returned to grazing use.

Reusable equipment will be segregated from worn-out or scrap items. Both categories of materials will be cleaned and temporarily stored onsite prior to final disposal. Cleaned refuse may be disposed in sanitary landfills, while contaminated materials will be disposed at a licensed byproduct disposal facility.

4.2.2 Plant Site Decommissioning

After the equipment, building, piping, and associated support facilities have been removed from the wellfield area, a gamma survey will be conducted over the same wellfield grid that was surveyed prior to operation. The gamma survey results will be compared with those determined prior to operations. Soil samples will then be obtained from locations that display elevated gamma readings, and the samples will be analyzed for their natural uranium and Ra-226 content. Based upon the results, contaminated soil will be removed and shipped to a byproduct disposal site. The gamma survey and soil sampling results will be used as a data base to assure that the site is radiologically safe for unrestricted use.

The plant area will be comprised of compacted earth, some surface covering material, a cement foundation, and the building. Once the building and cement pads have been removed, a gamma survey will be made of the compacted area. Any areas with elevated gamma readings will be sampled for radium and natural uranium to determine if contaminated soils must be removed. The compacted area will then be re-contoured, with excess soil placed in the pond pits, and the topsoil replaced. A final gamma survey will be performed and the results compared with the pre-operational survey results.

Reclamation and limited decommissioning will represent interim steps that are necessary prior to the final decommissioning of the site. To assure that final decommissioning is adequate to return the site to unrestricted use, CBR will continued to be required, by license condition, to
submit a final detailed decommissioning plan for NRC review and approval at least 12 months prior to the planned final shutdown of mining operations.

5.0 EVALUATION OF ENVIRONMENTAL IMPACTS

5.1 Introduction

In situ leaching of uranium is an established technology. The major human health and environmental concerns associated with this technique of uranium recovery are the impacts of mining on groundwater quality, the impacts from potential evaporation pond leakage, the radiological impacts, and the disposal of wastes.

The ISL activities at the Crow Butte Uranium Project have involved or will involve (1) the temporary change in the land use of a permitted area of about 1130 ha (2800 acres), (2) disturbance of about 200 ha (500 acres), (3) net withdrawal of groundwater of about 95 Lpm (25 gpm) during ore extraction and 300 Lpm (80 gpm) during restoration (CBR, 1995), and (4) the temporary contamination of monitored groundwater aquifers. Facilities required for an ISL operation have already been constructed at the Crow Butte site.

The commercial operation was previously evaluated in an EA (NRC, 1989a) and an SER (NRC, 1989b) prepared by the NRC staff for the issuance of Source Material License SUA-1534 on December 29, 1989. The staff prepared and issued supplemental EAs for specific licensing actions on March 16, 1993; March 14, 1996; July 19, 1996; and June 13, 1997. With the renewal of SUA-1534 under the PBLC format, the licensee's SERP will be required to determine whether proposed changes in the facility, process circuit, or procedures (1) conflict with any license conditions or impair CBR's ability to meet all applicable NRC regulations; (2) degrade the essential safety and environmental commitments in the LRA; or (3) are not consistent with the conclusions of actions analyzed and selected in this EA. If any of these determinations are answered in the affirmative, then CBR will be required to request an amendment to SUA-1534 for the proposed change.

As discussed in Section 3.7.3, the licensee monitors all effluent streams and the various environmental pathways that could be affected (e.g., air, surface water, and groundwater). The results of this monitoring is submitted to NRC on a semiannual basis, in accordance with 10 CFR 40.65, along with injection rates, recovery rates, and injection manifold pressures. These conditions will continue to be required in the renewal license.

5.2 Air Quality Impacts

5.2.1 Construction-Related

Construction and development of the continued operations associated with this project could affect air quality by the release of diesel emissions from drilling and construction equipment and by releases of dust. Diesel emissions should be minor and of short duration, and will be readily dispersed in the atmosphere. Fugitive dust generated from construction and drilling activity, as well as vehicle traffic on unpaved roads, tends to be localized and of short duration.
5.2.2 Operations-Related

The main non-radiologic gaseous effluents that will be released from the operation of processing equipment in the uranium recovery plant include gases such as CO₂ and hydrogen chloride. These gases will be vented directly to the atmosphere where they will be readily dispersed. Impacts associated with the release of radioactive radon-222 are discussed in Section 5.7.

5.3 Land Use Impacts

The primary impact on land use is the fencing of the restricted areas within the permit area boundary to exclude livestock from approximately 61 ha (150 acres) until the completion of restoration and reclamation. CBR estimates in the LRA a loss of between 3.9 and 11.7 animal unit months (AUM) per year based on the then current (December 1995) stocking rates used in the area. These effects will be limited, temporary, and reversible through returning the land to its former grazing use following completion of post-mining surface reclamation. Wildlife is prevented from entering the evaporation pond area by a 2 m (6 ft) high fence.

5.4 Water Impacts

5.4.1 Surface Water Impacts

Potential impacts to surface water can result from lixiviant spills or waste water leaks reaching surface streams such as Squaw Creek and English Creek, or one of the eight surface impoundments that exist within or near the commercial restricted area boundaries.

Quarterly monitoring results during commercial operations (i.e., between 1990 and 1997) show that radionuclide concentrations have remained at or below pre-operational background levels. There have been a couple of events during this time period, however, which could have impacted surface waters in the vicinity of the project.

On March 25–26, 1991, a wellhead failure resulted in a spill of about 26,500 L (7000 gal.) of groundwater from the Basal Chadron aquifer. The licensee notified NRC and initiated a soil survey to determine the extent of contamination. One sample exceeded background for Ra-226 by more than 5 pCi/g. The licensee cleaned up the area around this sample by removing the contaminated soil and disposing of it in the facility’s waste water evaporation pond. Confirmatory sampling was conducted to ensure compliance with Criterion 6(6) of 10 CFR Part 40, Appendix A.

On January 11, 1993, an injection trunkline in MU-3 leaked at a pipe joint at the site of a wellfield house that was under construction. Computer monitoring alarms indicated low flow, the plant was shut down about 20 minutes after the first alarm, and the cause of the alarm was investigated. The leaking section was isolated by an inline valve on the main trunkline, and the field was restarted about thirty minutes later. Approximately 87,000 L (23,000 gal.) of injection water spilled onto the ground, and an unknown amount flowed down a small drainage into Squaw Creek. The creek was frozen at the time, and the spill traveled approximately 0.4 km (0.25 mi) downstream. The licensee responded to the spill by collecting frozen lixiviant from the
ground and disposing it in the waste water evaporation pond. Preliminary Ra-226 analysis of the spill indicated concentrations of about 0.2 pCi/L. The licensee notified NRC by telephone within 48 hours, and NRC performed a reactive inspection on January 14, 1993. As a result of this inspection, NRC issued two Severity Level IV violations to CBR for the pipeline failure and for the lack of an SOP addressing construction, testing, operation, or maintenance of pipelines used to transport injection fluids. The licensee responded to the inspection and violations by implementing a soil sampling program to characterize the potential radiological impact of the spill, constructing an earthen berm to protect Squaw Creek, and developing an impact analysis and incident response plan for wellfield releases to address construction, testing, operation, or maintenance of buried pipelines.

5.4.2 Groundwater Impacts

The native formation waters in the ore zones in the Basal Chadron aquifer are not recommended for human consumption because of naturally high levels of dissolved radioactive materials (uranium and Ra-226). In addition to uranium, other metals will also be mobilized by the mining process. As discussed in Section 4.1.2, groundwater restoration includes groundwater transfer, groundwater sweep, permeate reductant/injection, and aquifer recirculation. In 1988, the staff determined that the R&D operation was successful in restoring the groundwater quality to the pre-mining class-of-use goal set for that restoration program. As yet, CBR has not completed restoration of a commercial MU; however, based on the R&D demonstration and restoration efforts at in situ operations in other parts of the country, no long-term impacts on the aquifer are expected.

During operations, the potential exists for small portions of the surrounding groundwater occasionally to be affected by excursions. However, excursion monitoring and control will be implemented at all MUs. The degree of excursion monitoring and corrective action being implemented is sufficient that such occurrences will result in minimal environmental impacts.

CBR has conducted quarterly sampling of water supply wells near the facility. Radionuclide concentrations in these samples have remained at or below pre-operational background levels during commercial operations.

An additional concern with groundwater is the extent of drawdown in water supply wells near the project. CBR estimates (CBR, 1995) that the projected maximum drawdown, at a production rate of 18,930 Lpm (5000 gpm), ranges from approximately 6.7 m to 8.3 m (22 to 27 ft). In most cases, this is less than a 10 percent reduction of the available drawdown and in all cases less than 17 percent. The impact is limited because groundwater from the Chadron aquifer is not generally used and is not recommended for human consumption. Water levels are expected to recover after ISL operations are ended.

5.4.2.1 History of Excursions

While it is common to dramatically degrade the water quality within the mineralized zone during uranium recovery activities, migration of lixiviant-fortified groundwater beyond the expected confines (horizontal or vertical) of a wellfield may occur and be detected in a monitor well. These "excursions" may occur due to a variety of circumstances. Most excursions result from
an improper balance between injection and recovery rates, undetected high permeability strata or geologic faults, improperly abandoned exploration drill holes, discontinuity and unsuitability of the confining units that allow movement of the lixiviant out of the ore zone, poor well integrity, or hydrofracturing of the ore zone or surrounding units. The potential for horizontal excursions will be primarily controlled through wellfield bleed (i.e., minor wellfield overproduction). Should overproduction fail, lixiviant-fortified groundwater could move to a monitor well. If such an event takes place, the excursion is reversed typically by increasing the overproduction rate, and thereby drawing the lixiviant back into the extraction zone.

During the commercial operation of the Crow Butte Uranium Project, no horizontal excursions have been reported. However, three vertical excursions have been reported since 1989. During 1995, three MU-4 shallow monitoring wells in the overlying Brule formation were placed on excursion status, when UCL limits were exceeded for one or more excursion indicator parameters (chloride, sodium, sulfate, conductivity, and total alkalinity). In one case, it was determined that UCL exceedance was likely related to borehole cement contamination. CBR determined that the other two excursions were due to slight fluctuations in baseline groundwater quality, and so, after indicator parameters concentrations stabilized and re-established themselves, UCLs for the two wells were reset at slightly higher concentrations than before the excursions.

In addition to these three excursions, CBR has reported two other events in accordance with the reporting requirements for excursions. The first was reported in March 1996, after a routine five-year mechanical integrity test discovered the failure of a casing couple on an injection well in MU-2, at a depth of 12 m (40 ft), and an area of approximately 2320 square meters (25,000 square ft) was delineated with conductivity levels four to five times baseline. For this event, CBR is continuing groundwater remediation efforts. The second event occurred in November 1996, when a small leak was discovered in a plugged and abandoned injection well in MU-5, and minor amounts of mining solutions were determined to have leaked into a shallow aquifer approximately 30.5 m (100 ft) below the ground surface. After delineating the extent of the contamination, CBR commenced pumping to recover the leaked solution, and on April 28, 1997, CBR submitted sampling data collected from the injection well, which indicated that concentrations of the excursion indicator parameters were consistent with those observed in the shallow monitor wells located nearby.

In addressing excursions, CBR corrective actions have included:

- Notifying NRC as required by license condition;
- Discontinuing injection of ISL solutions into nearby injection wells;
- Drilling additional wells to delineate the extent of the excursion;
- Reviewing all well completion records and mechanical integrity test results for the wells surrounding the excursion well, reviewing of historic water levels, and increasing the sampling frequency; and
- Implementing groundwater remediation efforts, as needed.
The history of excursions at the Crow Butte Uranium Project is summarized in Table 5-1.

<table>
<thead>
<tr>
<th>Well</th>
<th>Mine Unit</th>
<th>Zone</th>
<th>Date Placed on Excursion</th>
<th>Parameters Exceeded</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM 4-5</td>
<td>4</td>
<td>Overlying Brule Fm</td>
<td>1/25/95</td>
<td>Sulfate</td>
<td>Off excursion (5/5/95); No remediation necessary</td>
</tr>
<tr>
<td>SM 4-2</td>
<td>4</td>
<td>Overlying Brule Fm</td>
<td>4/13/95</td>
<td>Sodium, Alkalinity</td>
<td>Off excursion (2/20/97); No remediation necessary</td>
</tr>
<tr>
<td>SM 4-7</td>
<td>4</td>
<td>Overlying Brule Fm</td>
<td>12/29/95</td>
<td>Chloride</td>
<td>Off excursion (2/20/97); No remediation necessary</td>
</tr>
<tr>
<td>I196-5</td>
<td>2</td>
<td>Overlying Brule Fm</td>
<td>3/29/96</td>
<td>Conductivity, etc.</td>
<td>In remediation</td>
</tr>
<tr>
<td>I752-14</td>
<td>5</td>
<td>Overlying Brule Fm</td>
<td>11/8/96</td>
<td>Conductivity, etc.</td>
<td>Off excursion (10/97); Remediation completed</td>
</tr>
</tbody>
</table>

5.4.2.2. Evaporation Pond Spills and Seepage

Spills from the evaporation ponds resulting from dike failure could result in unacceptable contamination of surface waters and groundwater. However, the likelihood of dike failure is considered to be minimal, because the evaporation pond embankments have been designed in accordance with NRC staff recommendations in Regulatory Guide 3.11 (NRC, 1977). To ensure that the design specifications will not be exceeded, CBR will continue to be required by license condition to maintain minimum acceptable freeboard limits for each pond, as discussed in Section 3.6.2.1.

In addition, as discussed previously in Section 3.7.2, the licensee currently is required by license condition to conduct regular inspections of its evaporation ponds in accordance with the approved Evaporation Pond Onsite Inspection Program. Finally, the evaporation ponds are also inspected periodically by NRC or its contractors to ensure compliance with Federal guidelines for dam safety.

Accidental leaks from the evaporation ponds, if uncontrolled, potentially could contaminate shallow aquifers and locally degrade groundwater quality. Several minor leaks have been identified through monitoring of the leak detection system, as part of the environmental monitoring program. All reported leaks have involved only the upper, or primary, liner in a double-lined system; at no time have impounded solutions leaked into the ground beneath the ponds. These leaks are summarized in Table 5-2.
Table 5-2. History of evaporation pond leaks at the Crow Butte Uranium Project

<table>
<thead>
<tr>
<th>Pond</th>
<th>Date of Leak</th>
<th>Liner</th>
<th>Volume</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial 4</td>
<td>5/8/91</td>
<td>Upper</td>
<td>Not reported</td>
<td>Pond drained to expose holes in liner. Holes patched. Pond water pumped from underdrain system.</td>
</tr>
<tr>
<td>Commercial 4</td>
<td>1/15/92</td>
<td>Upper</td>
<td>1135 L (300 gals.)</td>
<td>Pond level lowered below leak location. Holes patched. Pond water pumped from underdrain system.</td>
</tr>
<tr>
<td>Commercial 3</td>
<td>3/13/92</td>
<td>Upper</td>
<td>757 L (200 gals.)</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Commercial 4</td>
<td>1/4/93</td>
<td>Upper</td>
<td>Not reported</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Commercial 4</td>
<td>2/22/93</td>
<td>Upper</td>
<td>Not reported</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Commercial 4</td>
<td>5/19/93</td>
<td>Upper</td>
<td>Not reported</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Commercial 1</td>
<td>8/13/97</td>
<td>Upper</td>
<td>257 L (68 gals.)</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

As previously discussed in Section 3.7.2, CBR will continue to be required, by license condition, to notify NRC in the event of an evaporation pond leak and to implement corrective actions to mitigate the potential consequences of the leak. In the past, corrective actions have included:
1. Lowering the pond level in the leaking pond through liquid transfer to other ponds,
2. Identifying and patching holes or tears in the liner, and
3. Analyzing the water quality in the pond leak detection system for all leak indicators once a week during the leak period and once a week for the two weeks following repairs.

5.5 Impacts on Soils

Activities at the Crow Butte Uranium Project result in relatively minimal disturbance of soils. Soil horizons will be disrupted for the burial of pipelines and the construction of wellfield houses and plant facilities. In the wellfield, soil disturbance is limited to drilling and construction of access roads. The total area affected by facility operations is small relative to the size of the permit area, and disturbed areas will be remediated as part of site decommissioning (Section 4.2.1). Irrigation areas, if used, and spills will be monitored and controlled to maintain levels of radioactive and toxic constituents within allowable release standards.

If necessary, CBR will use its environmental monitoring program to identify impacts on soil resulting from land application. These efforts will include water analysis prior to release for land application to assure compliance with release limits. Soil sampling would be used to establish background for uranium, radium, and other metals (barium, boron, molybdenum, and vanadium). Soil sampling for Ra-226 would be conducted following each irrigation season. Groundwater sampling includes three monitoring wells in the Brule Formation near both...
irrigation areas, and surface water sampling includes impoundments and stream sampling near the irrigation areas.

CBR is required currently to maintain a log of all significant solution spills and to notify NRC of any such spills that may have a radiological impact on the environment. During 1996, the licensee logged 27 spill incidents, which ranged in volume from 45 to 65,500 L (12 to 17,305 gal.) of fluid unrecovered. Of these, only one was determined to be reportable to NRC.

To remove any confusion as to what may constitute a "significant" spill, with this renewal, NRC will modify this license condition to require that CBR maintain documentation of all spills involving source or byproduct materials or process chemicals. CBR still will be required to notify NRC of any spills that may have a radiological impact on the environment. The required spill documentation will include the date and volume of the spill, radiological survey results, corrective actions taken, and maps showing the spill location and any impacted areas. The purpose of this documentation is to aid in the final site decommissioning activities. CBR agreed to this modified condition, by telephone, on February 3, 1998.

CBR also is responsible for radium cleanup of soils during final site decontamination and decommissioning. CBR will meet NRC criteria for release to unrestricted use such that radium soil concentrations, averaged over an area of 100 m² (1075 ft²) does not exceed background levels by more than (1) 5 pCi/g of Ra-226 averaged over the first 15 cm (6 in.) below the surface, and (2) 15 pCi/g of Ra-226 averaged over 15-cm (6-in.) thick layers more than 15 cm (6 in.) below the surface. In approving CBR's land application plan (Amendment 21 to SUA-1534; November 16, 1993), conservative NRC calculations indicated that, after 20 years of restoration and land application, Ra-226 concentrations in the top 15 cm (6 in.) would be less than 0.3 pCi/g.

5.6 Impacts on Ecological Systems

The principal effect on the ecology will be disturbance of the soil as a result of drilling activities and construction of wellfield houses, plant facilities, access roads, and pipelines. These disturbances will be confined for the most part to the uranium recovery facility and the wellfields, and will consist of cleared land parcels surrounded by undisturbed land. Reclamation and reseeding of the property will occur after cessation of ore extraction (see Section 4.2.1) or sooner when possible, as in the case of buried pipelines. Alteration of fewer than about 200 ha (500 acres) is not considered to constitute a significant adverse impact.

5.6.1 Endangered Species

The black-footed ferret (*Mustela nigripes*) is the only Federally-listed threatened or endangered mammal that may occur in the region; however, the last black-footed ferret sighting in the region occurred in 1959. The ferret's principal prey, the prairie dog, is not common in the site environs, and therefore, black-footed ferrets are not expected in the area.

Whooping cranes (*Grus americana*), bald eagles (*Haliaeetus leucocephalus*), and peregrine falcons (*Falco peregrinus anatum*) are Federally-listed threatened or endangered bird species that may occur in the region. Whooping cranes migrate through Nebraska between March and May and again from October to December each year, using shallow, sparsely-vegetated
streams and wetlands for roosting and feeding. These birds were not observed in the site area during a 1982 survey, although sightings have been confirmed on wetlands near Whitney, Nebraska, approximately 12 miles northeast of the site (CBR, 1995).

Bald eagles were observed during the 1982 survey, and they are sparsely scattered across Dawes County, Nebraska during migration (November 1 to April 1). However, these birds do not nest in the survey area, and neither critical habitat nor regular roosting sites can be found in the site area. Peregrine falcons, on the other hand, generally are associated with wetland and open areas, such as grassland and cropland. These birds were not observed during the 1982 survey.

Finally, CBR has stated that no identified Federally-listed endangered plant or amphibian/reptile species occur on the Crow Butte Uranium Project (CBR, 1995).

The staff considers it unlikely that there will be significant impacts to raptors (including bald eagles and peregrine falcons), because there will be little to no reduction in suitable prey and minimal destruction (if any) of potential nesting sites. Impacts to whooping cranes are not expected, because there will be no reduction of critical habitat for these birds as a result of operations at the Crow Butte Uranium Project. The U.S. Fish and Wildlife Service indicated its agreement with the staff's conclusion, by letter dated January 5, 1998 (see Appendix A).

5.6.2 Aquatic Biota

Squaw Creek and English Creek run through the permit area, and there are eight impoundments in or near the permit area. With the exception of the spill described in Section 5.4.1, aquatic resources have not been impacted by commercial operations. Following the January 11, 1993, spill, CBR constructed berms and containment dams to prevent further spills into Squaw Creek, and implemented an incident response plan to reduce the chance of another release to the aquatic system.

In addition, CBR is conducting, and will continue to conduct, regular monitoring of surface waters flowing through the project, as part of its environmental monitoring program.

5.7 Radiological Impacts

5.7.1 Introduction

The primary source of radiological impact to the environment from site operations is radon-222 released from the processing plant and the wellfields. This section describes project-contributed incremental radiological effects on the environment in the vicinity of the project. Among the items discussed are: (1) exposure pathways, (2) impacts to nearby individuals, and (3) impacts to biota other than man.

Because the operations at the CBR facility do not involve conventional blasting and removal of ore from the orebody, there will be no radionuclide particulate emissions associated with such activities, nor from the grinding of ore, as is done at a conventional uranium mill. In addition, CBR employs a vacuum dryer for final yellowcake processing, with dust and gas generated
from drying collected in a liquid condenser. As a result, no particulates will be released to the environment.

5.7.2 Offsite Impacts

Radioactive emissions of radon-222 are vented to the atmosphere from injection wells, and through a manifold system connected to IX columns and production surge tanks. Processing plant emissions are released to the atmosphere through an exhaust stack. Releases of Ra-222 may result in three exposure pathways: inhalation, ingestion, and external exposure.

In approving CBR's request to increase its processing flowrate from 13,250 Lpm (3500 gpm) to 18,930 Lpm (5000 gpm) (Amendment 34 to SUA-1534; March 14, 1996), the staff reviewed MILDOS-Area calculations submitted by CBR. Based on its review, the staff determined that the modeling satisfactorily showed that the potential radiological impacts to offsite individuals would remain well below the 1 millisievert per year (mSv/yr) (100 millirem per year [mrem/yr]) public dose limit of 10 CFR 20.1301. The largest dose estimate was 0.203 mSv/yr (20.3 mrem/yr) for an individual located approximately 1.0 km (0.62 mi) from the processing plant exhaust stack.

To ensure that offsite concentrations will be maintained below permissible limits, the licensee will continue to be required to monitor radon concentrations at and near the site boundary. Results of this monitoring is submitted to NRC on a semiannual basis, in accordance with 10 CFR 40.65.

5.7.3 Radiological Impact on Biota Other Than Humans

Although no guidelines concerning acceptable limits of radiation exposure have been established for the protection of species other than humans, it is generally agreed that the limits for humans are conservative for other species. Doses from gaseous effluents to terrestrial biota such as birds and mammals will be similar to those calculated for humans and use the same exposure pathways. Because the effluents of the facility will be monitored to protect human health and safety, no adverse radiological impact is expected for resident animals. Fencing prevents most large domestic and wild animals from entering the evaporation ponds and the plant facilities. It is possible that migratory birds may land on the ponds, but the visits should be infrequent.

The licensee is required to conduct an environmental monitoring program that evaluates the concentration of radionuclides in the environment that could lead to offsite exposures. The staff considers that CBR's environmental monitoring program has proven sufficient to evaluate the radiological impacts of the operations at the Crow Butte Uranium Project.

5.8 In-Plant Safety

The NRC, through 10 CFR Part 20 and license conditions, requires a radiological safety program that contains the basic elements needed to assure that exposures are kept low or, in any event, as low as is reasonably achievable (ALARA). Therefore, an in-plant radiation safety program which includes the following is required:
• Qualified management of the radiation safety program and appropriate training of personnel,
• Written radiation procedures,
• Airborne and surface contamination sampling and monitoring,
• Internal and external radiation monitoring programs,
• An approved respiratory protection program, and
• An annual ALARA audit and frequent in-house inspections.

In addition, during routine radiation safety inspections, the NRC staff observes in-plant industrial safety for deficiencies and brings any deficiencies found to the attention of facility management.

The NRC considers the program of in-plant safety, as required by Federal regulations, and the radiation safety program, as defined by 10 CFR Part 20, to be sufficient to protect the worker during normal operations. The NRC evaluation of the licensee's radiation safety program is discussed more fully in the SER.

5.9 Waste Disposal Impacts

Under NRC regulations (10 CFR Part 40, Appendix A, Criterion 2), to avoid the proliferation of waste disposal sites, byproduct material from uranium ISL operations must be disposed at existing uranium mill tailings disposal sites, unless such offsite disposal is shown to be impracticable or the benefits of onsite disposal clearly outweigh those of reducing the number of waste disposal sites. Therefore, NRC will continue to require, by license condition, that waste byproduct materials generated by project operations be disposed at a licensed byproduct waste disposal site. CBR's current arrangement for doing so and additional NRC requirements are discussed in Section 3.6.3.

To ensure that CBR retains control of all contaminated wastes while they are onsite, the licensee will continue to be required, by license condition, to maintain an area within the restricted area boundary for the storage of contaminated materials prior to their disposal. CBR will survey all equipment, buildings, and other items for radioactive contamination, prior to their release from the site for unrestricted use. CBR will continue to be required to dispose of all contaminated wastes and evaporation pond residues at a licensed radioactive waste disposal site. Finally, transportation of all material to the byproduct disposal facility will be handled in accordance with U.S. Department of Transportation and NRC regulations (49 CFR 173.369 and 10 CFR Part 71, respectively).
6.0 ENVIRONMENTAL EFFECTS OF ACCIDENTS

6.1 Potential Failure of Chemical Storage Tanks

Process fluids will be contained in vessels and piping circuits within the recovery plant or within outside storage tanks placed on concrete berms. Tanks are typically constructed of fiberglass or steel. Tank accidents may involve complete rupture of one of the tanks or the development of small leaks. The plant building structure and a concrete curb are designed to limit and contain any liquid spills that occur within the building and direct the spill to a floor sump. The environmental consequences of such a leak are considered to be minor, since all fluids from the floor sump will be pumped back into the process circuit or to the waste disposal system. The licensee has SOPs in place for managing spills should they occur. The contingency plans for the plant also include alarms and automatic shutdown actions for critical parameters and equipment to further reduce the likely impact of a potential tank failure.

6.2 Potential Pipeline Failures

The rupture of a pipeline between the main recovery plant and an MU or within a wellfield can result in a loss of either barren or pregnant lixiviant and the contamination of the ground in the area of the break. CBR buries all piping from the plant, as well as that to and within the wellfields, to avoid freezing. All pipeline welds are tested at operating pressures prior to burial and the start of production flow (CBR, 1995). Each wellfield has a number of wellfield houses where injection and recovery lines are monitored continuously. Individual lines have high and low flow alarms, and all set points and alarms are monitored by computer in the control room. In addition, each wellfield house has an alarm system to detect spills within the house. In this way, small, occasional leaks at joints and fittings for pipes in the wellfield houses can be detected and repaired as needed.

The trunkline leak in MU-3 on January 11, 1993 (discussed in Section 5.4.1) resulted in low flow alarms and a shutdown of the wellfield to isolate the leak. As a result of the 1993 leak and the subsequent analysis of its causes, CBR developed and implemented an impact analysis and incident response plan for wellfield releases addressing construction, testing, operation, and maintenance of buried pipelines.

6.3 Potential Failure of Evaporation Pond Liner or Berms

Leaks in the evaporation ponds can be detected either by the regular visual inspections or by the leak detection system installed in each pond. As described in Section 5.4.2.2, CBR has taken, and will continue to be required to take, appropriate corrective actions in the event of leaks.

Although catastrophic failure of the berms is considered unlikely, due to their design and pond freeboard requirements, CBR has contingency plans in place in the event of such an occurrence.
6.4 Potential Failure of Injection or Production Well Casing

A casing failure would be most significant in injection wells where the solution is injected under pressure. Depending on where the casing leak is located, a failure potentially could be undetected for several days. Failure of a production well is likely to cause a less significant excursion due to the lower operating pressures involved. To minimize the likelihood of such leaks, CBR pressure-tests wells for integrity following initial completion, after testing and certain types of maintenance, and at least once every five years during a well’s operational lifetime. With the casing cementing and integrity testing procedures implemented at the Crow Butte Uranium Project, the probability of casing failure should be low.

6.5 Potential for Hydraulic Fracturing

If the injection pressures should exceed the fracturing pressure of the confining formation, fractures could be induced that result in excursions into the overlying aquifers. Such an event is unlikely, because the wellfields are operated at pressures well below the formation fracturing pressure.

6.6 Potential Impacts from Transportation Accidents

Transportation of materials to and from the Crow Butte site includes: (1) the shipment of process chemicals and fuel to the site, (2) the shipment of packaged yellowcake offsite, and (3) the shipment of contaminated wastes from the site to a licensed disposal facility.

The Crow Butte Uranium Project receives approximately 272 bulk chemical deliveries per year (CBR, 1995). Based on published accident statistics, the likelihood of a truck shipment involving chemicals or yellowcake shipment being involved in an accident of any type in the area of the facility, during a one-year period, is approximately one percent. CBR has an emergency response plan in place to deal with transportation accidents.

Dried yellowcake is generally packaged in 208 L (55 gal.) 18 gauge drums holding an average of about 364 kg (800 pounds). A typical shipment, made three to four times per month, consists of about 55 drums. CBR transports the yellowcake in accordance with appropriate U.S. Department of Transportation and NRC regulations for Type A packaging (49 CFR Parts 171–189 and 10 CFR Part 71). All vehicles and shipments will be surveyed for contamination prior to leaving the site. A shipping packet is provided with copies of all documents related to the shipment, including an exclusive use statement, bills of lading, Form 741, contamination survey results, emergency telephone numbers, emergency procedures, a list of materials in the spill control kit, and the driver responsibility statement.

In the LRA, CBR provides the results of an analysis of a hypothetical yellowcake shipment accident, estimating that the 50-year dose commitment to the lungs in the general population was less than one percent of the 50-year integrated dose from natural background.

Transportation of contaminated material to a license byproduct disposal facility occurs as needed. Because the number of trips is much less than that for other types of shipments, and because of the low levels of radiation typically involved with these materials, the impact from
transportation accidents involving these shipments is considered to be low. Emergency procedures will be the same as for the yellowcake and chemical shipments.

7.0 ALTERNATIVES

The action under consideration is the renewal of Source Material License SUA-1534, for continued commercial operation of the Crow Butte Uranium Project, as requested by CBR. The alternatives available to NRC are to:

1. Renew the license with such conditions as are considered necessary or appropriate to protect public health and safety and the environment;

2. Renew the license, with such conditions as are considered necessary or appropriate to protect public health and safety and the environment, but not allow CBR to expand its operations beyond those previously approved; or

3. Deny renewal of the license.

Based on its review of the information identified in Section 1.3.2, the NRC staff has concluded that the environmental impacts associated with the proposed action do not warrant either the limiting of CBR's future operations or the denial of the license renewal. Additionally, in the SER prepared for this action, the staff has reviewed the licensee's proposed action with respect to the criteria for license issuance specified in 10 CFR Part 40, Section 40.32, and has no basis for denial of the proposed action. Therefore, the staff considers that Alternative 1 is the appropriate alternative for selection.

8.0 FINANCIAL SURETY

Under 10 CFR Part 40, Appendix A, Criterion 9, NRC licensees are required to establish a financial surety arrangement adequate to cover the estimated costs, if accomplished by a third party, for completion of the NRC-approved site closure plan including: decommissioning and decontamination of the facility, the cost of offsite disposal of radioactive solid process or evaporation pond residues, soil and water analyses, and groundwater restoration as warranted. For ISL facilities, these costs include decommissioning and decontaminating aboveground facilities; disposing of radioactive process solids or evaporation pond residues; and restoring groundwater in the mined areas to restoration targets. The surety is based on an estimate which must account for the total costs that would be incurred if an independent contractor were contracted to perform the work. The surety estimate must be approved by NRC and based on an NRC-approved decommissioning and reclamation plan. The licensee also must provide the surety arrangement through a financial instrument acceptable to NRC. The licensee's surety mechanism will be reviewed annually by NRC to ensure that sufficient funds are available to complete reclamation. Additionally, the amount of the surety should be adjusted to recognize any increases or decreases in liability resulting from inflation changes, engineering plan changes, or other conditions affecting costs.

CBR has maintained an acceptable surety mechanism throughout the course of commercial operations at the Crow Butte Uranium Project. The current surety level to cover aboveground
decommissioning and decontamination, offsite disposal of radioactive solid process wastes or evaporation pond residues, and groundwater restoration is $8,950,827, held as an Irrevocable Standby Letter of Credit issued by Colorado National Bank, in favor of the State of Nebraska. This surety amount was reviewed and approved by NRC on January 7, 1998. CBR will continue to be required, by license condition, to maintain a financial surety arrangement in accordance with the requirements of 10 CFR Part 40, Appendix A, Criterion 9. The surety requirements will continue to be reviewed at least annually by NRC to ensure that the funds and surety arrangements are acceptable.

9.0 CONSULTATIONS WITH OTHER FEDERAL AGENCIES AND THE STATE OF NEBRASKA

On October 21, 1997, a draft copy of this EA was sent to the NDEQ for review and comment. By telephone on October 28, 1997, a representative of the NDEQ provided editorial and clarification comments to the staff. In response, the staff made minor revisions to Sections 3.3.3, 5.4.2.1, and 6.0.

By letter dated December 8, 1997, the staff requested comments from the U.S. Fish and Wildlife Service (USFWS) on the effects that the continued operations at the Crow Butte site may have on endangered or threatened species. With this letter, the staff stated its belief that it had no reason to expect that any such plant or animal species would be affected adversely on or near the site. In response, by letter dated January 5, 1998 (see Appendix), the USFWS concurred with the staff's conclusion.

The staff also consulted with the State Historic Preservation Officer (SHPO) for the State of Nebraska, in accordance with the provisions of the National Historic Preservation Act of 1966, as amended. This consultation culminated in a telephone conference call between the staff, the Deputy SHPO, a State archaeologist, the licensee, and two consultants to the licensee; the results of this call are documented in a December 31, 1997, letter from the staff to the SHPO (see Appendix A). In that conference call, the Deputy SHPO stated that CBR's continued policy of avoidance for the six potentially eligible sites identified in a 1987 survey (Section 2.7) remained acceptable. The Deputy SHPO did recommend that an additional survey be conducted to identify traditional cultural properties in the region including and surrounding the Crow Butte site. The staff committed to including a condition in the renewed SUA-1534 to require CBR to conduct a cultural resources survey prior to engaging in any construction activity not previously assessed by NRC (Section 2.7). By letter dated January 30, 1998, the Deputy SHPO indicated his agreement with the staff's summary of the consultation to date, but indicated that additional consultation may be necessary depending on the outcome of the traditional cultural properties survey (see Appendix A). The staff recognizes this possibility.

10.0 FINDING OF NO SIGNIFICANT IMPACT

CBR has applied to NRC to renew Source Material License SUA-1534 and authorize continued commercial uranium production at the Crow Butte Uranium Project in Dawes County, Nebraska. NRC has re-examined actual and potential environmental impacts associated with the project and has determined that the renewal of the source material license will (1) be consistent with
the applicable requirements of 10 CFR Part 40, §2) not be inimical to public health and safety, and (3) not have long-term detrimental effects on the environment.

Therefore, based on an evaluation of CBR's renewal request, the NRC staff has determined that the proper action is to issue a final Finding of No Significant Impact in the Federal Register. The following statements support the FONSI and summarize the conclusions resulting from the staff's environmental assessment:

A. The proposed groundwater monitoring program is sufficient to detect excursions (vertical or horizontal) of mining solutions. Furthermore, aquifer testing and the previous history of operations indicate that the production zone is adequately confined, thereby assuring hydrologic control of mining solutions;

B. Liquid process wastes will be disposed in accordance with approved waste disposal options. Monitoring programs are in place to ensure appropriate operation of the deep disposal well and to detect potential leakage from the solar evaporation ponds;

C. An acceptable environmental and effluent monitoring program is in place to monitor effluent releases and to detect if applicable regulatory limits are exceeded. Radiological effluents from facility operations have been and are expected to continue to remain below the regulatory limits;

D. All radioactive wastes generated by facility operations will be disposed offsite at a licensed byproduct waste disposal site;

E. Groundwater impacted by mining operations will be restored to baseline conditions on a mine unit average, as a primary goal. If baseline conditions cannot be reasonably achieved, the R&D operations have demonstrated that the groundwater can be restored to applicable class-of-use standards; and

F. Because the staff has determined that there will be no significant impacts associated with approval of the license renewal, there can be no disproportionally high and adverse effects or impacts on minority and low-income populations. Consequently, further evaluation of Environmental Justice concerns, as outlined in Executive Order 12898 and NRC's Office of Nuclear Material Safety and Safeguards Policy and Procedures Letter 1-50, Revision 1, is not warranted.

Based on these findings, the NRC staff recommends that CBR's source material license be renewed for the continued commercial scale operation of the Crow Butte Uranium Project. The source material license shall be based upon the licensee's LRA, this EA, the SER, and the license conditions that address environmental issues (see Section 11). License conditions addressing radiation safety concerns can be found in the SER.
11.0 CONCLUSIONS INCLUDING ENVIRONMENTAL LICENSE CONDITIONS

Upon completion of the environmental review of CBR's application for the renewal of Source Material License SUA-1534, the staff has concluded that the continued commercial operation of the Crow Butte Uranium Project, in accordance with the following conditions to be included in the renewed SUA-1534, is protective of public health and safety and the environment, and fulfills the requirements of 10 CFR Part 51. Therefore, the staff recommends renewal of SUA-1534, subject, in part, to the following conditions:

1. A. The licensee may, without prior NRC approval, and subject to the conditions specified in Part B of this condition:
 (i) Make changes in the facility or process, as presented in the application.
 (ii) Make changes in the procedures presented in the application.
 (iii) Conduct tests or experiments not presented in the application.

B. The licensee shall file an application for an amendment to the license, unless the following conditions are satisfied:
 (i) The change, test, or experiment does not conflict with any requirement specifically stated in this license (excluding information referenced in the approved license application), or impair the licensee's ability to meet all applicable NRC regulations.
 (ii) There is no degradation in the essential safety or environmental commitments in the license application, or provided by the approved reclamation plan.
 (iii) The change, test, or experiment is consistent with the conclusions of actions analyzed and selected in this EA.

C. The licensee's determinations concerning Part B of this condition shall be made by a "Safety and Environmental Review Panel" (SERP). The SERP shall consist of a minimum of three individuals employed by the licensee, and one of these shall be designated as the SERP chairman. One member of the SERP shall have expertise in management and shall be responsible for approval of managerial and financial changes; one member shall have expertise in operations and/or construction and shall have responsibility for implementing any operational changes; and one member shall be the CRSO or equivalent, with the responsibility for assuring changes conform to radiation safety and environmental requirements. Additional members may be included in the SERP as appropriate, to address technical aspects such as health physics, groundwater hydrology, surface-water hydrology, specific earth sciences, and other technical disciplines. Temporary members or permanent members, other than the three above-specified individuals, may be consultants.
D. The licensee shall maintain records of any changes made pursuant to this condition until license termination. These records shall include written safety and environmental evaluations, made by the SERP, that provide the basis for determining that changes are in compliance with the requirements referred to in Part B of this condition. The licensee shall furnish, in an annual report to NRC, a description of such changes, tests, or experiments, including a summary of the safety and environmental evaluation of each. In addition, the licensee shall annually submit to NRC change pages to the operations plan and reclamation plan of the approved license application to reflect changes made under this condition.

2. Written standard operating procedures (SOPs) shall be established and followed for all operational process activities involving radioactive materials that are handled, processed, or stored. SOPs for operational activities shall enumerate pertinent radiation safety practices to be followed. Additionally, written procedures shall be established for non-operational activities to include in-plant and environmental monitoring, bioassay analyses, and instrument calibrations. An approved, up-to-date copy of each written procedure shall be kept in the process area to which it applies.

All written procedures for both operational and non-operational activities shall be reviewed and approved in writing by the CRSO before implementation and whenever a change in procedure is proposed to ensure that proper radiation protection principles are being applied. In addition, the CRSO shall perform a documented review of all existing SOPs at least annually.

3. Before engaging in any developmental activity not previously assessed by NRC, the licensee shall conduct a cultural resource inventory. All disturbances associated with the proposed development will be completed in compliance with the National Historic Preservation Act of 1966 (as amended) and its implementing regulations (36 CFR Part 800), and the Archaeological Resources Protection Act of 1979 (as amended) and its implementing regulations (43 CFR Part 7).

In order to ensure that no unapproved disturbance of cultural resources occurs, any work resulting in the discovery of previously unknown cultural artifacts shall cease. The artifacts shall be inventoried and evaluated in accordance with 36 CFR Part 800, and no disturbance shall occur until the licensee has received authorization from NRC to proceed.

Prior to any developmental activity in the immediate vicinity of the six "potentially eligible" sites identified in Section 2.4 of the approved license application, the licensee shall provide documentation of its coordination with the Nebraska State Historical Society to NRC.

4. The licensee shall conduct operations within the permit area boundaries shown in Figure 1.3-1 of the approved license application, as amended by the submittal dated July 28, 1997.

5. Plant throughput shall not exceed a maximum flow rate of 18,930 Lpm (5000 gpm), excluding restoration flow. Annual yellowcake production shall not exceed 908,000 kg (2 million lbs).
6. The licensee shall use a lixiviant composed of native groundwater, with added sodium carbonate/bicarbonate and oxygen or hydrogen peroxide, as described in the approved license application.

7. The licensee shall construct all wells in accordance with methods described in Section 3.1.2 of the approved license application. Mechanical integrity tests shall be performed on each injection and production well before the wells are utilized and on wells that have been serviced with equipment or procedures that could damage the well casing. Additionally, each well shall be retested at least once each five years it is in use. The integrity test shall pressurize the well to 125 percent of the maximum operating pressure and shall maintain 90 percent of this pressure for 20 minutes to pass the test. A single point resistance test may be used only in conjunction with another approved well integrity testing method. If any well casing failing the integrity test cannot be repaired, the well shall be plugged and abandoned.

Additionally, flow rates on each injection and recovery well, and manifold pressures on the entire system, shall be measured and recorded daily. During well-field operations, injection pressures shall not exceed the integrity test pressure at the injection well heads.

8. The licensee shall establish pre-operational baseline groundwater quality data for all mine units. Baseline water quality sampling shall provide representative pre-mining groundwater quality data and restoration criteria as described in the approved license application.

The data shall consist, at a minimum, of the following sampling and analyses:

A. Three samples shall be collected from production and injection wells at a minimum density of one production or injection well per 4 acres. These samples shall be collected at least 14 days apart.

B. The samples shall be analyzed for alkalinity, ammonia, arsenic, barium, bicarbonate, boron, cadmium, calcium, carbonate, chloride, chromium, copper, fluoride, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, nitrate, nitrite, pH, potassium, radium-226, selenium, silica, sodium, specific conductivity, sulfate, temperature, total dissolved solids, uranium, vanadium, and zinc.

C. Groundwater restoration goals shall be established on a parameter-by-parameter basis, and the primary goal of restoration shall be to return the groundwater quality, on a mine unit average, to baseline conditions. The licensee shall conduct ground-water restoration activities in accordance with the groundwater restoration plan submitted by letter dated November 26, 1996.

9. Prior to mining in each mine unit, the licensee shall collect groundwater samples from and establish Upper Control Limits (UCLs) for designated upper aquifer and perimeter monitor wells. The data shall consist, at a minimum, of the following sampling and analyses:
A. Three samples shall be collected from the monitor wells at a minimum density of (1) one upper aquifer monitor well per 5 acres, and (2) all perimeter monitor wells. These samples shall be collected at least 14 days apart.

B. The samples shall be analyzed for the following indicator parameters: chloride, sodium, sulfate, conductivity, and total alkalinity.

C. For each monitor well, UCLs shall be calculated for each indicator parameter as equal to 20 percent above the maximum concentration measured for that parameter among the three samples.

10. All liquid effluents from process buildings and other process waste streams, with the exception of sanitary wastes, shall be returned to the process circuit; discharged to the solar evaporation ponds; disposed by land irrigation in accordance with the licensee's proposal submitted on August 3, 1988, as modified by its submittal on June 7, 1993; or deep well injected in accordance with the licensee's report submitted on August 24, 1993, as modified by submittals on December 7, 1995, and April 3, 1996.

11. Prior to mining in each mine unit, the licensee shall establish Upper Control Limits (UCLs) for each monitor well, equal to 20 percent above the maximum baseline concentration measured for each of the indicator parameters. The indicator parameters shall be chloride, sodium, sulfate, conductivity, and total alkalinity.

All designated monitor wells shall be sampled and tested no more than 14 days apart. If two UCLs are exceeded in a well or if a single UCL in a well is exceeded by 20 percent, the licensee shall take a confirming water sample within 48 hours after the results of the first analyses are received and analyze the sample for the indicator parameters. If the second sample does not indicate an exceedance, a third sample shall be taken and analyzed in a similar manner within 48 hours after the second set of samples was acquired. If neither the second or third sample indicates exceedance, the first sample shall be considered in error.

If either the second or third sample confirms that UCL(s) are exceeded, the well in question will be placed on excursion status. Upon confirmation of an excursion, the licensee shall notify NRC, implement corrective action, and increase the sampling frequency for the indicator parameters at the excursion well to once every seven (7) days. Corrective actions for confirmed excursions may be, but are not limited to, those described in Section 5.7.8.1 of the approved license application. An excursion is considered concluded when the concentrations of the indicator parameters are below the concentration levels defining an excursion for three (3) consecutive weekly samples.

12. In the event a lixiviant excursion is confirmed by groundwater monitoring, NRC shall be notified by telephone within 24 hours and in writing within 7 days from the time the excursion is confirmed. In addition, a written report shall be submitted to NRC within 60 days of excursion confirmation. The report shall describe the excursion event, corrective actions taken, and results obtained. If the well(s) are still on excursion when the report is
submitted, the report also must contain a schedule for the submittal of future reports to NRC which will provide an update of corrective actions taken and the results obtained. In addition, if the well(s) are still on excursion at the time the 60-day report is submitted, the licensee shall terminate injection of lixiviant into the wellfield on excursion until such time that aquifer cleanup is complete.

13. Each of the R&D evaporation ponds shall have at least 0.9 m (3 ft) of freeboard. Each of the commercial evaporation ponds shall have at least 1.5 m (5 ft) of freeboard.

Additionally, the licensee shall maintain, at all times, sufficient reserve capacity in the evaporation pond system to enable transferring the contents of a pond to the other ponds. In the event of a leak and subsequent transfer of liquid, freeboard requirements shall be suspended during the repair period.

14. The licensee shall perform and document inspections in accordance with the February 5, 1996 revision to its Evaporation Pond Onsite Inspection Program.

Any time 15.2 cm (6 in.) or more of fluid is detected in a commercial pond standpipe, it shall be analyzed for specific conductance. If the water quality is degraded beyond the action level, the water shall be further sampled and analyzed for chloride, alkalinity, sodium, and sulfate. Any time 15.2 cm (6 in.) or more of fluid is detected in an R&D pond standpipe, it shall be analyzed for specific conductance, chloride, alkalinity, sodium, and sulfate.

Upon verification of a liner leak, the licensee shall notify NRC, lower the fluid level by transferring the pond's contents to an alternate cell, and undertake repairs, as needed. Water quality in the affected standpipes shall be analyzed for the five parameters listed above once every seven days during the leak period and once every seven days for at least 14 days following repairs.

15. In the event evaporation pond standpipe water analyses indicate that a pond is leaking, NRC shall be notified by telephone within 48 hours of leak verification. In addition, a written report shall be submitted to NRC within 30 days of first notifying NRC that a leak exists. This report shall include analytical data, describe the mitigative action, and discuss the results of that action.

16. The licensee shall establish and conduct an effluent and environmental monitoring program in accordance with the program submitted by letter dated July 28, 1997.

17. Effluent and environmental monitoring program results submitted in accordance with 10 CFR 40.65 shall be reported in the format shown in Table 3 of Regulatory Guide 4.14, (Rev. 1) entitled, "Sample Format for Reporting Monitoring Data." These reports also shall include injection rates, recovery rates, and injection manifold pressures.

18. Until license termination, the licensee shall maintain documentation on all spills of source or 11e(2) byproduct materials, and all spills of process chemicals. Documented information shall include: date, spill volume, total activity of each radionuclide released,
radiological survey results, corrective actions, results of remediation surveys, and a map showing the spill location and impacted area.

19. The licensee shall notify NRC by telephone within 48 hours of any spill of source or 11e.(2) byproduct materials and all spills of process chemicals, that may have a radiological impact on the environment. This notification shall be followed, within seven days, by submittal of a written report detailing the conditions leading to the spill, corrective actions taken, and results achieved. This requirement is in addition to the reporting requirements of 10 CFR Part 20 and 10 CFR 40.60.

20. The licensee shall maintain an NRC-approved financial surety arrangement, consistent with 10 CFR 40, Appendix A, Criterion 9, adequate to cover the estimated reclamation and closure costs, if accomplished by a third party, for all existing operations and any planned expansions or operational changes for the upcoming year. Reclamation includes all cited activities and groundwater restoration, as well as off-site disposal of all 11e.(2) byproduct material.

Within three months of NRC approval of a revised closure plan and cost estimate, the licensee shall submit for NRC review and approval, a proposed revision to the financial surety arrangement if estimated costs in the newly approved site closure plan exceed the amount covered in the existing financial surety. The revised surety shall then be in effect within three months of written NRC approval.

Annual updates to the surety amount, required by 10 CFR 40, Appendix A, Criterion 9, shall be provided to NRC by October 1 of each year. If NRC has not approved a proposed revision 30 days prior to the expiration date of the existing surety arrangement, the licensee shall extend the existing arrangement, prior to expiration, for one year. Along with each proposed revision or annual update of the surety, the licensee shall submit supporting documentation showing a breakdown of the costs and the basis for the cost estimates with adjustments for inflation, maintenance of a minimum 15 percent contingency, changes in engineering plans, activities performed, and any other conditions affecting estimated costs for site closure.

At least 90 days prior to beginning construction associated with any planned expansion or operational change which was not included in the annual surety update, the licensee shall provide for NRC approval an updated surety to cover the expansion or change.

The licensee shall also provide NRC with copies of surety-related correspondence submitted to the State of Nebraska, a copy of the State’s surety review, and the final approved surety arrangement. The licensee also must ensure that the surety, where authorized to be held by the State, identifies the NRC-related portion of the surety and covers the above-ground decommissioning and decontamination, the cost of offsite disposal, soil and water sample analyses, and groundwater restoration associated with the site. The basis for the cost estimate is the NRC-approved site closure plan or the NRC-approved revisions to the plan. Reclamation/decommissioning plan, cost estimates, and annual updates should follow the outline in Appendix E to NUREG-1569 (NRC, 1997).
entitled "Recommended Outline for Site-Specific In Situ Leach Facility Reclamation and Stabilization Cost Estimates."

Crow Butte Resources, Inc.'s currently approved surety instrument, an Irrevocable Standby Letter of Credit issued by Colorado National Bank, in favor of the State of Nebraska, shall be continuously maintained in the sum total amount of no less than $8,950,827 for the purpose of complying with 10 CFR 40, Appendix A, Criterion 9, until a replacement is authorized by both the State of Nebraska and NRC.

21. The licensee shall maintain an area within the restricted area boundary for the temporary storage of contaminated materials. All contaminated wastes and evaporation pond residues shall be disposed at a radioactive waste disposal site licensed to accept 11e.(2) byproduct material.

22. Release of equipment or packages from the restricted area shall be in accordance with the NRC guidance document entitled, "Guidelines for Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Licenses for Byproduct, Source, or Special Nuclear Materials," dated May 1987, or suitable alternative procedures approved by NRC prior to any such release.

23. The licensee shall dispose of 11e.(2) byproduct material from the Crow Butte facility at a site licensed by NRC or an NRC Agreement State to receive 11e.(2) byproduct material. The licensee shall identify the disposal facility to NRC in writing. The licensee's approved waste disposal agreement must be maintained on-site. In the event the agreement expires or is terminated, the licensee shall notify NRC in writing, within 7 days after the date of expiration or termination. A new agreement shall be submitted for NRC approval within 90 days after expiration or termination, or the licensee will be prohibited from further lixiviant injection.

24. The licensee shall submit a detailed decommissioning plan to NRC for review and approval at least 12 months prior to the planned final shutdown of mining operations.

25. The licensee shall conduct groundwater restoration activities and post-restoration monitoring in each MU in accordance with the groundwater restoration plan submitted by letter dated November 26, 1996. The goal of restoration shall be to return groundwater quality, on an MU average, to baseline conditions.

26. The licensee shall construct evaporation ponds 2 and 5 in accordance with the submittal dated May 23, 1988, as modified by the submittal dated July 16, 1992. In addition, the ponds shall be constructed as follows:

A. Fill material shall be classified as a silty sand material in accordance with the Unified Soil Classification System.

B. Quality control of the fill shall be performed in accordance with the guidance provided for radon barrier materials in the NRC Staff Technical Position on testing and inspection plans (January 1999).
C. As-built drawings shall be submitted to NRC within 3 months of the completion of construction of each pond.

27. The results of the following activities, operations, or actions shall be documented: sampling, analyses, surveys and monitoring, survey/monitoring equipment calibration results, reports on audits and inspections, all meetings and training courses required by this license and any subsequent reviews, investigations and corrective actions. Unless otherwise specified in the NRC regulations, all such documentation shall be maintained for a period of at least five (5) years.
12.0 REFERENCES

CBR, 1997e, Request to amend Source Material License SUA-1534, transmitted by letter from Stephen P. Collings (CBR) to Joseph J. Holonich (NRC), dated July 28, 1997.

State of Nebraska, 1997, Nebraska State Handbook, Nebraska Department of Economic Development Internet site address <http://www.ded.state.ne.us/economy/stathand>.
State of Nebraska Department of Environmental Quality, 1996, letter from Randolph Wood (NDEQ) to Steve Collings (CBR), dated November 27, 1996.

NRC, 1996, "Supplemental Environmental Assessment for Crow Butte Resource, Inc.'s Crow Butte In-Situ Leach Mining Project Dawes County, Nebraska, in Consideration of an Amendment (Increase in Deep Well Injection Constituent Concentration Limits) to NRC Source Material License SUA-1534," NRC Docket No. 40-8943, issued June 20, 1996.

NRC, 1989a, "Environmental Assessment by the Uranium Recovery Field Office in Consideration of an Application for a Source Material License for Ferret Exploration Company of Nebraska Crow Butte Commercial In Situ Leach Operation, Dawes County, Nebraska," Docket No. 40-8943, issued December 12, 1989.

APPENDIX

DOCUMENTATION OF
CONSULTATION WITH OTHER FEDERAL AGENCIES
AND
THE STATE OF NEBRASKA
U.S. Fish and Wildlife Service
ATTN: Field Supervisor
208 W. Second Street
Federal Building, 2nd Floor
Grand Island, Nebraska 68801

December 08, 1997

SUBJECT: INFORMATION REQUEST ON PROTECTED PLANT AND ANIMAL SPECIES

Dear Sir or Madam:

The U.S. Nuclear Regulatory Commission currently is reviewing a license renewal application from Crow Butte Resources, Inc. (CBR) for its Crow Butte in-situ leach uranium solution mine in Dawes County, Nebraska. The facility is located approximately eight kilometers (five miles) southeast of Crawford, Nebraska, and solution mining operations are currently permitted within an approximately 1130-hectare (2800-acre) area that encompasses all or portions of Sections 11, 12, and 13 of Township 31N, Range 52W and Sections 18, 19, 20, 29, and 30 of Township 31N, Range 51W, Dawes County, Nebraska. The NRC staff is preparing an Environmental Assessment to document its review of CBR’s renewal application, and the staff is proposing to renew CBR’s license for a period of ten years.

Enclosed are the results of the NRC staff’s review of the results of plant and animal surveys conducted by the licensee. Based on this review, the staff currently has no reason to expect any such plant or animal species to be adversely affected on or near the site. However, NRC would appreciate any information or concerns you might have regarding the effects of the continued operations at the Crow Butte site on listed, proposed, or candidate endangered and threatened species, as well as any other sensitive-species concerns.

If you have any questions concerning this letter, please contact Mr. James Park of my staff. Mr. Park can be reached at (301) 415-6699. Thank you for your prompt assistance on this matter.

Sincerely,

[Signature]

Joseph J. Holonich, Chief
Uranium Recovery Branch
Division of Waste Management
Office of Nuclear Material Safety and Safeguards

Docket No. 40-8943
License No. SUA-1534

Enclosure: As stated
Endangered Species

The black-footed ferret (*Mustela nigripes*) is the only Federally-listed threatened or endangered mammal that may occur in the region; however, the last black-footed ferret sighting in the region occurred in 1959. The ferret's principal prey, the prairie dog, is not common in the site environs, and therefore, black-footed ferrets are not expected in the area.

Whooping cranes (*Grus americana*), bald eagles (*Haliaeetus leucocephalus*), and peregrine falcons (*Falco peregrinus anatum*) are Federally-listed threatened or endangered bird species that may occur in the region. Whooping cranes migrate through Nebraska between March and May and again from October to December each year, using shallow, sparsely-vegetated streams and wetlands for roosting and feeding. These birds were not observed in the site area during a 1982 survey, although sightings have been confirmed on wetlands near Whitney, Nebraska, approximately 12 miles northeast of the site (CBR, 1995).

Bald eagles were observed during the 1982 survey, and they are sparsely scattered across Dawes County, Nebraska, during migration (November 1 to April 1). However, these birds do not nest in the survey area, and neither critical habitat nor regular roosting sites can be found in the site area. Peregrine falcons, on the other hand, generally are associated with wetland and open areas, such as grassland and cropland. These birds were not observed during the 1982 survey.

Finally, CBR has stated that no identified Federally-listed endangered plant or amphibian/reptile species occur on the Crow Butte Uranium Project (CBR, 1995).

The staff considers it unlikely that there will be significant impacts to raptors (including bald eagles and peregrine falcons), because there will be little to no reduction in suitable prey and minimal destruction (if any) of potential nesting sites. Impacts to whooping cranes are not expected, because there will be no reduction of critical habitat for these birds as a result of operations at the Crow Butte Uranium Project.

(excerpt from NRC draft "Environmental Assessment for Renewal of NRC Source Material Licence SUA-1534, Crow Butte Resources, Incorporated, Crow Butte Uranium Project, Dawes County, Nebraska")
Mr. Joseph J. Holonich
Chief, Uranium Recovery Branch
Division of Waste Management
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001

Dear Mr. Holonich:

This responds to your December 8, 1997, letter requesting comments from the U.S. Fish and Wildlife Service (Service) regarding a license renewal application from Crow Butte Resources, Inc. for its Crow Butte in-situ leach uranium solution mine in Dawes County, Nebraska. We concur with the conclusion that the project as currently operated does not adversely affect federally listed threatened and endangered species or their critical habitat. Therefore, no further section 7 consultation under the Endangered Species Act of 1973 is required with the Service.

Long-term impacts of radiation exposure to birds utilizing the evaporation ponds may potentially be a cause for concern (namely radium, because of its propensity to bioaccumulate). Further, selenium levels in the evaporation ponds may result in selenium toxicosis in birds using the ponds. Because of the potential chronic effects of radiation and selenium exposure, bird usage of the evaporation ponds should continually be monitored.

If you have any further questions, please contact Mr. Wally Jobman within our office at (308)382-6468, extension 16.

Sincerely,

[Signature]

Nebraska Field Supervisor

cc: NGPC; Lincoln, NE (Attn: Martha Tacha)

(6)NRC.ltr
Mr. Lawrence J. Sommer, Director
Nebraska State Historical Society
1500 R Street
P.O. Box 82254
Lincoln, Nebraska 68501

SUBJECT: RESULTS OF CONSULTATION UNDER SECTION 106 OF THE NATIONAL HISTORIC PRESERVATION ACT OF 1966, AS AMENDED

Dear Mr. Sommer:

The U.S. Nuclear Regulatory Commission staff is in the process of reviewing an application by Crow Butte Resources, Inc. (CBR) to renew its NRC source material license for the commercial production of uranium at CBR's Crow Butte in-situ leach uranium solution mine in Dawes County, Nebraska. Under Section 106 of the National Historic Preservation Act of 1966, as amended (NHPA) and its implementing regulations at 36 CFR Part 800, the NRC is required to consult with the appropriate State Historical Preservation Officer (SHPO) so that the effects of a federally-licensed undertaking on sites eligible or potentially eligible for listing on the National Register of Historic Places may be taken into account. It is in your role as the SHPO for the State of Nebraska that I am contacting you.

On December 9, 1997, Mr. James Park of my staff coordinated a telephone conference call with the Deputy SHPO for the State of Nebraska (Mr. Robert Puschendorf), a State of Nebraska employee at Fort Robinson State Park (Mr. Terry Steinacher), the CBR President (Mr. Stephen Collings), and two consultants to CBR. The purpose of this call was to discuss issues raised by Mr. Puschendorf in a December 3, 1997, telephone call with Mr. Park regarding the extent of historical, archaeological, and cultural resource surveys performed to date for the region including and surrounding the Crow Butte site.

Associated with its commercial operations at the Crow Butte site, CBR has had two historical and archaeological surveys performed. The first was conducted in 1987 by a member of the Nebraska State Historical Society (NSHS), in which six potentially eligible historical and archaeological sites were identified. Rather than make a final determination of eligibility for any of these sites at that time, CBR chose to pursue a policy of avoidance and to commit to coordinate with the NSHS prior to development in the immediate vicinity of a potentially eligible site. The second survey was conducted in 1995 by CBR consultants and confirmed that operations to date had not impacted any of the six sites identified in the 1987 survey.

In the December 9, 1997, conference call, Mr. Puschendorf stated that he considered the results of the 1987 survey still to be adequate and CBR's continued policy of avoidance to be acceptable. He recommended that CBR and the NSHS re-formalize their agreement regarding pre-development coordination to bring it up to date.
Mr. Puschendorf also recommended that a survey of traditional cultural properties be performed in the region including and surrounding the Crow Butte site. This survey would be designed to identify properties of cultural significance to Native American tribes who once inhabited or still inhabit the area. Mr. Puschendorf stated his belief that the surveys performed to date for the Crow Butte site have not addressed fully the issue of traditional cultural properties as required under the NHPA and its current implementing regulations. As an outcome of this conference call, CBR did commit to initiating contact with the appropriate Native American tribes.

Finally, NRC, for its part, proposed that it include in the renewal license issued to CBR, a condition requiring CBR to conduct a cultural resource inventory prior to engaging in any developmental activity not previously assessed by NRC. In addition, NRC would require that all disturbances associated with the proposed development be completed in compliance with the NHPA and its implementing regulations, and the Archaeological Resources Protection Act of 1979, as amended, and its implementing regulations (43 CFR Part 7). Mr. Puschendorf stated his belief that this would be acceptable to the State.

Based on the results of the December 9, 1997, conference call (i.e., the proposed license conditions to require a cultural resource survey and CBR's initiation of the survey process), the NRC staff considers that it can proceed with the re-licensing of the commercial operations at the Crow Butte site. The staff welcomed the opportunity to consult with the State of Nebraska Deputy SHPO and appreciated his comments and input. The NRC staff considers that no further consultation is necessary and no response to this letter is required.

If you have any questions regarding this letter, please contact Mr. Park at (301) 415-6699.

Sincerely,

Joseph J. Holonich, Chief
Uranium Recovery Branch
Division of Waste Management
Office of Nuclear Material Safety and Safeguards

Docket No. 4Q-8943
License No. SUA-1534

cc: R. Puschendorf, NSHS
 T. Steinacher, NE/Fort Robinson
 S. Collings, CBR
January 30, 1998

Mr. Joseph J. Holonich
Chief
Uranium Recovery Branch
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

Re: Crow Butte Resources, Inc.
License HSUA-1534
HP #9702-003-01

Dear Mr. Holonich:

We have appreciated the opportunity to consult on cultural resources within the purview of the referenced licensing. Your letter of December 31, 1997 summarized discussions recently held in consultation concerning this licensing.

Your letter, however, did not fully summarize the circumstance by which comments relative to the identification of traditional cultural properties would be addressed. Reference is made to 36 CFR Part 800 4(a). The indication was given that concurrent to the six month public comment period, notice would be made to appropriate Native American tribes regarding traditional cultural properties. The Nebraska SHPO would be apprised of this process and any comments received. Further consultation may be indicated as a result of this process.

We hope this adequately addresses our understanding and that adequate opportunity will be available to address SHPO concurrence to this licensing.

Sincerely,

L. ROBERT PUSCHENDORF
Deputy State Historic Preservation Officer

cc: James Park, NRC